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1 Introduction

Central Bank Digital Currency (CBDC) is ”a digital form of central bank money

that is different from balances in traditional reserve or settlement accounts”[8]. The

evolving public stance of central banks in conjunction with CBDCs, the large number

of experiments, proof of concept implementations and even a few production imple-

mentations1 foreshadow that, in the coming years, more and more central banks will

begin to create novel digital forms of central bank money.

Why the global interest in augmenting existing (digital) money and cash through

digital central bank money is arising right now – and at the same time, practically

everywhere – is not easy to pinpoint. The fundamental economic concept – or rather,

concepts – coined as CBDC has, have been around for a long time; and although a

consensus seems to be forming around the much sharper definition of a CBDC being

a ”digital payment instrument, denominated in the national unit of account, that is

a direct liability of the central bank” [5], the various monetary, societal (and even

fiscal) value drivers, which are cited globally, are very varied. For a stark contrast, it

is worthwile to compare the opportunity analysis of the Bank of England [11] which

largely focuses on maintaining a resilient payments landscape (even with the decline

in the use of cash) with the eCNY pilot of the People’s Republic of China, which,

experts seem to agree, has strong finance control purposes.

That being said, in science fiction parlance, it seems to be steam engine time:

all the precursor ideas and technological inventions2 are in place now to answer to

broadly similar requirements; and it seems like that, suddenly, everybody is building

steam engines – that is, CBDCs.

With the ongoing developments as a backdrop, the work we undertook and report

on in this paper tried to look at the next step ahead: when CBDCs will finally become

a reality, how will they impact life beyond the original, payment and money transfer

oriented CBDC use cases?

Our specific research goal was to demonstrate that it is technically viable to

equip smart contract technology – already a game-changer in many sectors – with

the ability to use retail3 CBDCs and the benefits of doing so for industrial use cases.

However, in the current absence of open CBDC implementations, first we also

had to design and implement a retail CBDC prototype. This report describes the

following results:

1. Technical design considerations for a retail CBDC which uses distributed ledger

technology to meet integrity, availability and resilience requirements.

2. The implementation of a CBDC prototype system.

1See, e.g., the site https://cbdctracker.org
2Including cryptocurrencies and blockchain technologies.
3Widely accessible; in contrast to wholesale CBDCs, which are restricted to financial institutions.
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3. A representative smart contract based solution for an industrial asset manage-

ment cooperation scenario.

4. Integration of the CBDC prototype with the consortial blockchain network

hosting the industrial solution through asset bridging.

5. Demonstration of the integrated system.

This work is a report on technological exploration. Beyond the core ”money”

functionality (central bank issued electronic legal tender usable as a medium of

exchange), CBDCs have a wide range of proposed use cases – from monetary through

fiscal to public sector ones. Some of these don’t seem to carry the potential to disrupt

the established financial mechanisms of a nation in a major way; two examples are

”colored” – spendable only for certain purposes – direct governmental transfers and

facilitating the access of the unbanked to electronic money. However, very radical

visions have been formulated, too, which envision, among others, influencing the

movement of capital between sectors and gauging economic activity almost real-time

through a CBDC [15]. This report focuses on the core functionality – and how it can

be extended towards more sophisticated use cases through smart contracts. What

focus there is on specific usage falls on industrial applications.

Technological exploration also means that we ignore most questions of central

bank policy related to CBDCs. These include, but are not limited to, the question

whether a CBDC should carry interest, and if yes, what should be the interest rate4.

Last but not least, the report assumes that the reader is familiar with the basics

concepts of Distributed Ledger Technology (DLT), the types of DLT networks (public-

unpermissioned, public-permissioned, consortial-permissioned) and blockchains as

their (today) predominant implementation approach5.

4Central banks will likely want to avoid a ”run to CBDC”. [1] presents a compelling argument

towards the ability of a CBDC to coexist with the banking sector without a detrimental effect on

bank lending activity – if the interest on CBDC is set properly. At the same time, CBDCs can be

also used to introduce negative interest on (electronic) ”cash”: something that is certainly impossible

with physical cash, at least in direct, nominal terms. Setting a CBDC interest rate, however, is as

much a question of applied economic theory as of central bank policy – and decidedly not one of

CBDC technology.
5[16] provides a very tractable and well structured overview.
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2 CBDC ledger model and architecture

From an information system engineering point of view, the distinguishing, and, as we

will see, to a great extent orthogonal, dimensions of a widely accessible, electronic and

central-bank issued electronic money system are – at least – fourfold; all dimensions

characterizing a key aspect of the authoritative ledger (CBDC ledger) that ”accounts

for” the to be accepted global state of the electronic asset. At this point, we treat

the CBDC ledger – and its state – as a logical construct; allowing for scenarios where

the CBDC ledger is to be understood as the composition of multiple different ledgers

(not entirely unlike the way federated databases are created). That being said, the

architecture we propose in this work will be based on a single, although decentralized,

ledger.

• Native ledger data model and transactions: how the existence, ownership

and other properties (e.g., authorization policies for various usages) of the

electronic money are represented on the ledger as a ”current state” and how

past transactions are accounted for. (Technicalities, as whether those are stored

and managed as a ”chain of blocks”, are not relevant at this level of abstraction.)

Additionally, the types of transactions that can be initiated on the ledger state.

• Extensibility through smart contracts: to what extent can users of the

ledger extend its data model and accepted transaction type set through the

deployment of so-called smart contracts.

• Ledger update management: whether there are multiple parties involved in

deciding on the order, acceptance and effect of incoming transactions targeting

the current ledger state. If yes – i.e., the CBDC ledger is not, or parts of it

are not centralized –, what is the consensus mechanism used. Ledger update

management can also encompass an access management aspect – i.e., though

the electronic money as a service is widely accessible, the general public may

not directly access the system(s) actually maintaining the ledger.

• Validation by the public: widely accessible electronic money does not auto-

matically translate to widely validateable electronic money – neither from the

point of view of auditing whether a central bank is keeping itself to its stated

monetary policies, nor from the point of view of checking the honest handling

of one’s electronic money.

In the following sections, we describe a number of key design options, identify the

ones chosen for our purposes and provide our rationale. We build on the relatively

recent design options overview of the Bank of International Settlements [3]. Our

treatment also partially builds on [7], a research report which was made available

during our project (and the philosophy of which reflects – in a very well written
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way – some of the conclusions we were also converging towards at the time). That

being said, our mini-taxonomy differs from both of these sources and emphasizes the

system engineering aspects of creating a CBDC.

2.1 Ledger model

Following the pattern set by major cryptocurrencies, pseudonymous CBDC

ledgers, which maintain balances spendable by the owners of private crypto-

graphic keys, promise to be a viable and robust technical approach, able to

accomodate ”account-based” as well as ”token-based” CBDC approaches.

For pseudonymous ledgers, if required, proven and emerging privacy-

preserving strategies are available from the cryptocurrency world; at the

same time, KYC processes can create the knowledge necessary for linking

pseudonyms and identities. This, in turn, facilitates the creation of such

controlled processes as freezing funds, lawful seizure and the handling of

lost keys.

Regardless of ledger programmability through smart contracts, a small

core set of payment primitives (”transaction types”) has been emerging for

cryptocurrencies which can be treated as a template for the end-user usage

of a (retail) CBDC. On the other hand, modelling efforts have synthesized

the life cycle and behavioral facets of CBDC assets which most central

banks seem to agree on.

Based on an overview of these results, we propose a simple, but already

viable pseudonymous ledger data and transaction model for retail CB-

DCs. No assumption is made about ledger management and transaction

processing, only that (regulated and explicitly authorized) financial institu-

tions have the authority to ascertain the KYC status of our Ethereum-style

pseudonyms on the ledger and that the central bank authorizes financial

institutions to mint CBDC – up to central-bank managed allowances.

Ledger model: summary

The available, relatively recent technological guidance from BIS on CBDCs

emphasizes that the design decisions of any CBDC project shall be based on the

envisioned role (”customer needs”) of the the system and for retail CBDCs, defines

three architectural patterns (see also Figure 1).

• Indirect CBDCs are (at least) two-tiered systems, where the ”CBDC” is a

claim on an intermediary; intermediaries handle retail payments and the central

bank handles (or at least regulates and coordinates) wholesale payments.
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Figure 1: ”An overview of potential retail CBDC architectures”, source: [3], p89

• In a direct CBDC architecture, the CBDC is a direct claim on the central

bank and the central bank directly handles retail payments. The central bank

may choose to offload KYC processes to commercial entities.

• In a hybrid CBDC, the asset is a direct claim on the central bank, but

intermediaries handle KYC and have a role in the management of retail pay-

ments. The central bank may wish to only periodically record changes in retail

balances.

It is important to note that these architectural patterns are high-level, functional

architectures; they provide little to no guidance in terms of the structure of the

managed ledger (or ledgers, in the case of indirect CBDCs). Later on, in the context

of ledger updates and public verifiability, we will argue that as of now, hybrid

architectures seem to be the technically viable choice which, at the same time, retain

the true retail CBDC nature of the solution (it is debatable whether an indirect

CBDC can be a ”true” retail one, as it still relies on claims on intermediaries, even if

the claims are matched 1:1 on the central bank ledger).
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A further note – somewhat in advance – is in order with respect to the choice of

wording of the BIS guidance. Expressions as the ”central bank handles retail payments”

are best understood as shorthands for the central bank retaining appropriate control

over the given functionality.

In our view, a key component in the emergence of the CBDC idea is that the

technological advances of the last 15 years made a whole range of responsiblity-

sharing scenarios possible. At one end of the spectrum of possibilities, a central bank

may opt to create a hierarchical infrastructure which is centralized at every level

(a very conservative indirect CBDC); at the other end, it could (at least in theory)

simply create a special stablecoin6 on one of the large, public blockchain networks.

In the first case, it does actually ”handle” (wholesale) payments; in the second case,

however, it essentially authorizes a network to do so, in terms of the money-handling

rules captured in the smart contract underlying the stablecoin.

In case of a hypothetical stablecoin-CBDC, although the central bank retains at

the very least its sovereign right to issue currency, the ”handling” of transactions in

the information technology sense is yielded to the network – operated by the public.

Even if we put all questions of privacy, performance and actual security aside, it is

doubtful that a central bank would – or could – relinquish its power to control its

money through decentralization to that extent. At the same time, there are numerous

intermediate options, as, e.g., decentralization of transaction processing among a

number of trusted parties (governmental or non-governmental).

In the remainder of this subsection, we briefly review the applicable state of the

art with respect to retail CBDC ledger modeling, draw conclusions and collect our

recommendations.

2.1.1 The case for pseudonymization based accounting

Discussions on CBDCs tend to distinguish token-based and account based CBDCs.

Tokens and accounts in this context tend to have their ”normal” meanings – i.e.,

”bank account” like constructs versus fungible ”e-cash” –, and not the ones that

a reader well-versed in the cryptocurrency world may assume (i.e., Ethereum-like

”accounts” versus smart contract based tokens or Bitcoin-style unspent transaction

outputs).

The underlying core question here is, of course, that whether CBDC balances

should be (relatively) easily attributable to persons and organizations, or the CBDC

should function more like cash – anonymous, or potentially anonymous to a great

extent.

6Informally, stablecoins are tokens on a blockchain, which represent the – transferrable – ownership

of an asset with stable value. The schoolbook example is tokens representing units of some fiat

currency, backed 1:1 through the currency kept in some form of reserve. For an in-depth introduction

and classification, see, e.g., [14].

9



We believe that this dichotomy, while very valid from a classic point of view of

how we account for money, has been superseded by technological development and

arguably can be seen as a somewhat false one for CBDCs.

Practically all major, public-unpermissioned cryptocurrency networks – as Bitcoin

and Ethereum – use pseudonymization today, and this is what we see as the most

sensible choice for the upcoming first generation of CBDCs as the basic approach

towards accounting.

A pseudonymization-based ledger, as we will see shortly, can support the whole

gamut of options between fully identified accounts and anonymous units of electronic

money – with pseudonymization, where a specific CBDC should lay on the spectrum

is a question of central bank policy and regulatory environment. For instance, [19]

proposes that citizens should enjoy robust privacy with protection even against

government bodies being able to establish their CBDC holdings and transaction

history, while firms should be subject to a high level of regulatory accountability.

2.1.2 Pseudonymization-based ledgers

In cryptocurrencies, the customary approach for handling identity and authorization

is based on the end user creating her- or himself a public-private crpytographic key

pair. From the public key, a so-called address is created via hashing — a seemingly

unintelligible string of characters and numbers which serves as a pseudonym of

the user. The user then can instruct other users to transfer funds to this address;

when spending, she or he uses transactions requests signed by their private keys to

prove that they own the funds and thus are authorized to request transfers to other

addresses. A user can – and is generally advised to – use multiple pseudonyms.

Pseudonymization has multiple potential benefits in a CBDC context7. First, it

decouples the core tasks of maintaining balances and identifying the owners of those

balances. While an electronic money can be expected to be subject to various KYC,

AML and other legal and regulatory requirements – i.e., it can’t be expected to be

fully cash-like for the ownership and transfer of nontrivial sums –, at the same time,

a central bank may not wish to be able to directly ”see” identity information on a

CBDC ledger, not even if it is centralized and operated by it (and even much less so

if the ledger is implemented in a distributed way). Pseudonymization can respond to

such requirements – by storing and managing the relationship of addresses and actual

identities off-ledger. Figure 2 demonstrates the concept of pseudonymous balance

ledgers which use public-private key cryptography for transaction authorization.

7It is worth to note here that pseudonymization as a general mechanism is a fundamental concept

in cybersecurity and, ideally, its goals, approaches, properties and risks would deserve a structured

treatment, especially in light of its fundamental role in GDPR compliance. We refer the interested

reader to [9].
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Figure 2: The basic model of pseudonymous ledgers relying on asymmetric (public

key) cryptography.

2.1.3 Privacy and confidentiality of pseudonymized ledgers

It is important to note that a pseudonymous ledger of balances is not necessarily

anonymous. Ledger history still reveals the time and monetary value of transactions

between pseudonyms; thus, transaction graph pattern analysis may reveal the true

identities behind the pseudonyms. To what extent this is an issue certainly depends on

the extent the ledger content is distributed. For instance, for public-unpermissioned

blockchains this can be a very valid threat and there are now commercial services

specializing in transaction history analysis. If we assume a centrally managed CBDC

ledger which is not fully revealed to the public, or one that is managed by a closed

consortium of parties (using a blockchain-based distributed ledger technology), the

issue is much more benign.

Still, it may continue to exist, as a central bank (or the operating parties) may

want to avoid even the perception of being able link identities to transactions – that is,

without first receiving authorization using the proper legal channels, which inevitably

will have to exist for any truly impactful CBDC.

Luckily, as pseudonymization has been facing these privacy (and confidentiality)

threats in the cryptocurrency world now for more than a decade, the privacy-

preserving techniques invented for cryptocurrencies can be readily applied for CBDC

ledgers using private-public key pair based pseudonyms, too.

At the most basic level, users can be encouraged to always use new pseudonyms

(addresses) for each transaction (the requirement to perform KYC and AML for each

new address can technically complicate matters somewhat, but is not real challenge).

So-called transaction tumbling/mixing schemes can be also adopted which ”mix

together” transactions so that they effectively become untraceable by transaction
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history analysis, although these techniques are largely associated with illicit activities

in the cryptocurrency world [20].

Additionally, such privacy-preserving, pseudonymization based cryptocurrencies

already exist (e.g., Monero and ZCash), which, to our current knowledge, effectively

make the ledger content unintelligible for any unauthorized party by platform con-

struction, without additional user measures, such as using a transaction mixer. (In

the simplest case, for each transaction, the two sole ”authorized parties” are the

money sender and receiver).

The cryptography used by these platforms is fairly involved; e.g., ring signa-

tures and various Zero-Knowledge Proof (ZKP) approaches. However, trust in the

correctness of the mathematics and its application is robust and increasing.

It is also to note that the cryptography – especially ZKP-based approaches

– is rapidly gaining support in smart contract technology (see, e.g., [10], or the

Cairo language8). From the point of view of preserving privacy of asset handling

in blockchains, this means that a smart contract deployed on a blockchain (on

one supporting smart contracts, that is, but with the notable exception of Bitcoin

this is largely a non-issue by today) can act as a ”privacy enclave”. In terms of

pseudonymous addresses – and with some simplification – assets can be transferred

to the address of the smart contract; clients make transfers between their addresses

within the smart contract, using ZKPs to make the blockchain-recorded transactions

unintelligible for third parties; and when they decide so, they can instruct the smart

contract to transfer ”out” their assets for normal handling.

In effect, the privacy and confidentiality supporting technologies created in the

cryptocurrency world provide privacy design options and facilitate controlled privacy

for CBDC ledgers, even if we have to assume as a worst case that the general public

will be able to see the full ledger contents. This way, starting a CBDC project with a

cryptocurrency-like, pseudonym-based balance handling approach also provides a

viable privacy evolution path; even if a first design does not provide strong privacy

and confidentiality, these can be realized later on, without a fundamental rethinking

of the system design.

8https://www.cairo-lang.org/
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2.1.4 The yet-unknown impact of Self Sovereign Identities

This way, in our view, a pseudonym (public-key derived ”address”) based balance9

model is the most appropriate to propose for a general purpose, retail CBDC right

now. As pseudonyms disconnect actual identity from technical identifiers by design,

KYC and AML need off-ledger support; how we propose this to be solved will be

described in the following sections.

That said, one area where further research and design thinking is critically nec-

essary with respect to the core ledger model is Self-Sovereign Identities (SSI). In

recent years, the state of the art in digital identity management has far surpassed the

capabilities of classic Public Key Infrastructure (PKI). Blockchain-based solutions

have been created to provide a registry of identity authorities, which can crypto-

graphically issue such identities that can be used to prove identity properties without

releasing further information.

The schoolbook example of such schemes is creating a proof that solely states

that one’s older than 18; this proof can be verified solely by access to the identity of

the authority issuing the identity used for creating the proof. Such technologies are

already implemented in mature code bases (see, e.g., Hyperledger Indy10), realized

by blockchain networks (see, e.g., the Sovrin network11) and many key aspects are

under standardization or have been already standardized.

How SSIs can – and whether shall – be integrated into CBDC solutions, and how

they impact the core ledger model, is still a largely open question. On the other hand,

SSIs and identity management approaches resembling SSIs can be expected to enter

everyday life in Europe in the foreseeable future; importantly, this is one of the key

use cases of the under-development European Blockchain Services Infrastructure12.

2.1.5 Data and transaction models: native versus smart contract

At the time of this research, there is very little tangible – and openly accessible – prior

art with respect to specific data models for a CBDC ledger. Matters are complicated

by the fact that many proposals and ongoing activities rely on (blockchain-based)

distributed ledger technology, which, as a rule, is programmable through smart

contracts.

9As a more technical point of clarification, balance here is a logical notion. How the ”amount of

money spendable by the private key holder of a public address” is accounted for on the technical level

has a number of possible approaches; famously, while the Ethereum technology uses actual ”address

balances”, Bitcoin uses a so-called Unspent Transaction Output (UTXO) model, where essentially

yet-unspent ”packages” of currency are ”labeled” with the address they belong to. However, at

the very conceptual level, it is fair to say that in all cases, the ledger state, in effect, identifies the

”balance” of an ”address”.
10https://www.hyperledger.org/use/hyperledger-indy
11https://sovrin.org/
12https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/EBSI
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Ledgers which support smart contracts can certainly have a native ledger state,

transaction and ledger transaction history model (for cryptocurrency networks, this

is ”the money ledger”). Usually, smart contracts are recorded on the ledger through

special transactions – and after that, they can not only use the native transactions of

the underlying ledger, but also utilize the ledger as a ”custom database” to essentially

create their own sub-ledger.

This mechanism is very prominent in the Ethereum technology (and its largest

network deployment, the public Ethereum mainnet). Ethereum supports transferring

its native unit of account – called ”Ether” – between pseudonyms, but small, com-

piled programs – called ”smart contracts” – can be also deployed to its addresses.

These programs can be used to store and manage a custom Ethereum address ↔
currently owned amount mapping for arbitrary assets over the Ethereum ledger,

with the program defining the logic and authorization rules for creating, transferring,

using and destroying units of the tracked asset. (Authentication is generally based

on the same digital signature checking in the smart contracts as what is used for

native transactions.)

This way, the (distributed) ledger technology can be used to account for arbitrary

tokens – units of account having utility in some economic setting, ranging from

securities through bus tickets to doctor’s appointments. Additionally, not only can

the tokens be bought and sold for the native unit of account (using well-established

smart contract programming idioms), but themselves can be used as a money-like

instrument in other smart contracts.

For instance, one can write a smart contract which remotely enables and disables

physical locks (possibly, but not necessarily through a token-representing smart

contract), while the payment for unlocking a room happens with a smart contract

based token which represents fiat currency kept in reserve at a trustworthy and

regularly audited financial institution.

Ledgers which are programmable through user-created and -deployed smart

contracts originally appeared in the publicly accessible, unpermissioned consensus

blockchain world13. However, the general concept is actually not tied to decentralized

(including blockchain-based) systems14.

Depending on the smart contract programming language, some smart contracts

are more or less tied to a specific platform, as contracts written in the Solidity lan-

13While Ethereum was the milestone technology, even Bitcoin has some limited user-

programmability, which can be used for creating a range of token and asset handling smart contracts.
14As it is widely known, what blockchains provide as ”smart contract” programmability is actually

a weak version of the original ”smart contract” concept pioneered by the cryptographer Nick Szabo

in the 90’s. In the general case, they are neither contracts, nor smart and maybe have more in

common with database stored procedures than actual contracts. Still, this is the terminology that

has been widely adopted by industry as well as academia.
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guage for the Ethereum platform15; other high-level languages, as notably DAML16,

have been designed to be able to run on multiple platforms, including classic, cen-

tralized databases. Blockchain smart contracts written in classic, general-purpose

programming languages with some restrictions and using specific ledger interfaces

constitute another category; these can be easily ported, e.g., to centralized databases

(the key example here is the Hyperledger Fabric [2] blockchain framework, for which

smart contracts can be created using the Java, JavaScript, Go and Python languages.)

Last but not least, automatic creation of smart contract logic from models – as

business process models and state charts – is also an emerging technique [13].

As a consequence, prior art with respect to specific CDBC ledger data models

can be found in the following sources.

• The native ”money” and ”money handling” models of cryptocurrency platforms.

• Smart contracts created with the goal of modeling a CBDC. Note that these

are important first and foremost from the conceptual point of view; what is

available as a smart contract in a given domain, usually can be folded into

another platform as a ”native” capability, if need be.

• Legacy (i.e., existing) payment and settlement systems and their standards.

In this work, we omit the third category and review existing prior art for the first

two categories.

2.1.6 Prior art: Bitcoin

Bitcoin was the first true – and in its amalgamation of some known design principles,

quite revolutionary – ”peer to peer electronic cash system”. During the more than

a decade since its inception, generally speaking, it also retained a narrow focus on

electronic money handling. Consequently, although by the principle of issuance it

maintains a ledger for a money-like asset which is exactly the opposite of a CDBC, it

is worth to summarize its typical transaction types (through limited programmability,

even Bitcoin provides space for user innovation) – it is a strong contemporary model

of ”handling money”, unencumbered by any legacy from classic financial systems

technology. Note that this is a bird’s eye view – purposefully unencumbered by

technical details as the specific transaction model.

In the Bitcoin network, the overwhelming majority of transactions are ”money”

transfers between public addresses acting as pseudonyms [6]. Some transactions

15Of course, with Ethereum there’s always the choice to use the code on the world wide main net -

or on a sector specific Ethereum network as the Energy Web Chain (https://www.energyweb.org/

technology/energy-web-chain/), or on a bespoke consortial network which is closed to parties

outside the consortium.
16https://daml.com/
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simply record a small amount of data on the blockchain (without any monetary

transfers); others use the terse, but powerful scriptability of Bitcoin to implement

various ”smart contracts” – mostly asset management schemes.

What is important to note is that the scriptability of transactions facilitates

multiple-signature transactions as well as various conditional payment operations.

• Simple ”pay to public key hash” transactions transfer money from a public

address, by proving ownership through the ability of signing with the corre-

sponding private key, to one or more different public addresses.

• Transfers from so-called multi-signature (”multisig”) addresses require m sig-

natures from a predetermined n. ”Multisig” has many use cases; from ”joint

accounts” (1 : n) through buyer-seller escrow with an arbitrator (2 : 3) to

majority spending decision use cases.

Conditional payments (i.e., conditions beyond the encumbrance to prove the ability

to spend) introduce another, largely orthogonal, dimension. Arguably, the two most

important such conditions are timelocks and hashlocks.

• ”Timelocked” transfers: transfers, the funds of which become available for

further spending only after some time has elapsed. The underlying funds may

be locked until the lock time elapses, or spent beforehand, in which case the

timelocked transaction becomes invalid.

• Hashlocked transfers: the transferred funds become available to the recipient

for usage only after they prove that they know a secret input, the hash of which

is included in the ”hashlocked” transaction.

Both condition types have a number of straightforward and important use cases

in using Bitcoin as electronic money. They are also instrumental in the construc-

tion of so-called Hashed Timelock Contracts17 (HTLC) on the Bitcoin network. A

HTLC specifies a payment, which the receiver has to cryptographically acknowledge,

otherwise the transaction does not take place.

With HTLCs, schemes have emerged that enable the elimination of delivery

without payment and payment without delivery risks in various asset transfer scenarios

(at the expense of the HTLC-managing ledger locking funds for a predetermined

time, even if the asset transfer does not take place in the end).

Notably, third party free atomic swaps between ledgers supporting HTLCs are

possible and even commonplace today. (Suppose that Alice has some assets on ledger

α; Bob has some assets on ledger β. An atomic swap either does not modify this

state, or leads to a state where Bob becomes the owner of Alice’s original assets on

α and Alice becomes the owner of Bob’s original assets on β.)

17https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
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HTLC-based atomic swaps, while pioneered by the cryptocurrency world, have

wider ranging use cases. They provide a substrate for creating trustless and efficient,

blockchain-backed peer to peer payment channels (as first demonstrated by the

Bitcoin-backed Lightning network18). Secondly, HTLCs can provide robust means to

implement cross border payments – potentially between two distinct CBDC DLTs.

(This latter option was explored by the joint project ”Stella” of the ECB and the

Bank of Japan [12].

2.1.7 Prior art: CBDC token modeling

Smart-contract based tokens on the Ethereum network paved the way for financial

innovation in ”Decentralized Finance” (DeFi) [17]. Of the various token types,

stablecoins – tokens representing fiat currency in reserve – can be actually approached

as an Ersatz for central-bank issued CBDC on blockchains – they fill the gap of

making ”true” money available in a blockchain ecosystem. Their core problem is,

of course, the same as with bank accounts (they can be actually interpreted in

terms of narrow banking): they constitute a claim on a party other than a central

bank. Tokens that ”wrap” assets from another blockchain (e.g., Ethereum tokens

representing Bitcoin, locked on the Bitcoin ledger specifically for ”usage” on the

Ethereum ledger) serve a similar purpose, although with cryptocurrency and not fiat

backing: they create liquidity in the form of tokens.

The overabundance of token intents and capabilities led to various standardization

efforts. The technical ones (as ERC-2019) are less important for our purposes; it is

the Token Taxonomy Framework20 (TTF) which bears here mentioning. Initially

incubated by the Enterprise Ethereum Alliance (EEA), it is now under the auspices

of the InterWork Alliance (IWA)21. The TTF models tokens with so-called formulas,

which express behavioral facets (to be implemented by sets of interfaces on various

platforms).

After a careful review of the then-available communications of major central

banks and the literature, the eThaler project22 in Hyperledger Labs created the

following core TTF formula for CBDCs:

tF{d, t, p, c, SC} (1)

The letters translate to the following behaviors:

• tF: a CBDC token should be fractional fungible

18https://lightning.network/
19https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
20https://github.com/InterWorkAlliance/TokenTaxonomyFramework
21https://interwork.org/
22https://github.com/hyperledger-labs/eThaler
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• d: it should be divisible

• t: it should be transferable

• p: it should be ”pausable”, meaning that it should be possible to ”freeze”

movements of the token on certain market conditions (i.e., primarily to stop a

”run to CBDC”)

• SC: supply control ensures that the token can be ”minted” as well as ”burned”

only by a permitted authority (but at the same time, it also requires such an

authority to exist).

Building on the results of the eThaler project, a proposal from otcDigital23 sug-

gests creating CBDCs as dual, integrated ledgers ; one ledger handling the accounting

of TTF-based CBDC tokens and one running their smart contract workflows. The

authors suggest that the latter should be based on the standardized financial instru-

ment workflow framework captured in the Common Domain Model (CDM)24 of the

International Swaps and Derivatives Association (ISDA). As the core life-cycle of a

CBDC (especially a retail one) can be expected to be very simple (the key events

are minting, transfers, freezes/unfreezes and burn), this seems to be a somewhat

questionable approach for the general case; we expect CDM-based workflows to

be a truly sensible choice for CBDCs which have to directly back the life cycle of

sophisticated financial instruments as, e.g., swaps and options (for which the CDM

also provides a standardized framework).

ConsenSys, a leading Ethereum solutions provider, is also entering the CBDC

technology market25. What is publicly available from their approach does not delve

into data modeling details (can be expected to be along the lines of the results of

the eThaler project) and is more important from the architectural point of view –

thus, we will shortly comment on it later.

2.1.8 Prior art: modeling CBDCs in DAML

Digital Asset ref has also created a Proof-of-Concept CBDC implementation in their

now-open DAML smart contract language and a white paper26 on ”Principles for

Technical Implementation”. DAML is a high-level, domain specific smart contract

programming language which, through so-called drivers, can be ”hosted” on a range

of different ledger technologies – from centralized databases through blockchain-based

distributed ledgers to non-blockchain based ones. DAML is a high level, domain

specific language in the following senses.

23https://interwork.org/cbdc-central-bank-digital-currency-and-the-iwa-open-

standards-token-taxonomy-framework/
24https://www.isda.org/category/infrastructure/common-domain-model/
25See https://pages.consensys.net/central-banks-and-the-future-of-digital-money
26https://blog.digitalasset.com/news/cbdc-principles-for-technical-implementation
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• A high-level metaphor: it has a nontrivial, domain specific core ledger

metaphor – contract instances created from contract templates. Various parties

noted on a contract instance can forward the predetermined life-cycle of a

contract; to the point where a contract is ”closed”, with the potential side

effect of one or more new contracts being created. The language also has a

privacy model specifying and controlling the visibility properties of contract

instances at the abstract level of DAML itself, based on the roles defined in

contract templates.

• Execution through adaptation layers: for ”executing” DAML on a ledger,

a highly nontrivial ”driver” technological layer is necessary. The price to pay

for the ability to run DAML on various ”backends” is certainly threefold:

– not all backends are necessarily able to support all intended features of the

language from a systemic point from view (visibility, for instance, being

being critical),

– any serious effort to validate and verify a DAML-based solution also has

to involve the drivers themselves, increasing complexity very considerably,

and

– a DAML-based application may not be able to utilize core and distinguish-

ing features of certain hosting ledger platforms (either due to conceptual

mismatches or driver deficiencies).

• Domain specific: while many problems can be expressed more or less naturally

through evolving graphs of contracts, DAML was originally created with

sophisticated financial instruments in mind (the Common Domain Model

of ISDA has actually received a DAML implementation27). Initial experiences

of the authors of this report suggest that certain problem types (e.g., state

machine like control problems, securing data stream applications and high-

performance distributed ledger applications) are ill suited to a DAML-based

implementation.

DAML is also accompanied by Canton28, a cross-ledger interoperability protocol

which is broadly similar to the widely known Corda platform29 in the way that it

facilitates information flows between ledgers on a need-to-know basis and uses a

centralized ”sequencer” service to establish a global ordering of transactions.

The CBDC prototype of Digital Asset presents an implementation for two key use

cases: atomic, ”cross border” currency exchange (payment versus payment setup and

27https://medium.com/daml-driven/the-isda-cdm-much-more-than-just-a-standard-for-

the-derivatives-lifecycle-71c367373743
28https://www.canton.io/
29??
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settlement) and the use of ”earmarked” CBDC assets (paying rent with government

stimulus). Relying on Canton, interoperability between different CBDC platforms is

also showcased.

After a review of the publicly available DAML CBDC demo smart contracts,

the impression of the authors is that DAML may be a good fit for formulating

sophisticated smart contracts which rely on the existence of a CBDC, but not

necessarily for the CBDC itself (note: as we will see later, and as we implicitly

already assumed with the IWA proposal, the asset and the smart contracts utilizing

it do not necessarily have to use the same authoritative ledger). As a matter of fact,

in the demo contracts a CBDC is merely an ”asset”, which a Central Bank can mint.

There is considerable uncertainty at this point that whether DAML is able to express

the privacy controls actually needed by a CBDC asset (while meeting security and

dependability requirements) in the practice, and its scaling to CBDC workloads.

2.1.9 Outstanding requirements

While retail CBDCs can be expected to have an ”electronic cash”-like facet (up

to a holding or transaction value threshold), from a legal point of view they can

be expected to fall into a more regulated category than cash (e.g., in Hungarian

law, ”elektronikus pénz”, lit. electronic money). Consequently, practical retail CBDC

implementations will have to not only support KYC and AML, but also facilitate

the state exercising such controls as the freezing and court-ordered seizure of funds.

2.1.10 A simple CBDC ledger model

For our research prototype implementation, we created a simple CBDC ledger and

transaction data model which does not rely on post-initialization programmability –

through smart contracts or otherwise30. Figure 3 presents the data model.

Ethereum style accounts are at the core of the ledger model. These are ”Ethereum

style” in the sense that they have an associated Ethereum address and transaction

authorization checks are assumed to be performed based on checking digital signatures

of transaction requests (that is, whether the request was signed with the corresponding

private key). Accounts have a CBDC balance and can be multisig, meaning that all

outgoing transactions are required to have a necessary minimum number of signatures.

Accounts can be also frozen – meaning that no financial transactions are permitted;

and an amount can be also forcefully locked. Initiating the necessary state changes is

tied to special roles in the system (in the implementation we will present, the central

bank and/or authorized financial intermediaries).

30That being said, the transactions in our implementation are certainly implemented by smart

contracts.
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Figure 3: A simple ledger model for a pseudonymous CBDC

In our model, financial institutions appear as first class concepts. As a controlled

form of CBDC distribution, they can be authorized by the central bank to ”mint”

CBDC to addresses, up to a minting allowance managed by the central bank. Also,

they create KYC information to accompany the addresses; in our simplified model,

KYC levels include the following.

1. No KYC performed for the account yet

2. Basic KYC performed (e.g., tied only to simple authentication schemes and

mobile phone identifiers or emails)

3. Strong KYC performed (compliant with current banking requirements)

4. compromised: it has been revealed that the KYC earlier set for the account

was erroneous

We will delve into the ledger-modifying and query transactions over this simple

data model later, as it requires the discussion of our proposed architecture, too. Two

further important points here are that those certainly include the basic transfer

operation and that the implementations of all operations will include ”policy hooks”,

enabling a pluggable approach to create central-bank defined authorization policies.

Authorization policies include the maximum amounts transferrable at various KYC
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levels and the question that who and under what conditions is authorized to lock

funds on an account. Notice that the sensitive part of KYC data is not part of the

ledger model.

The ledger model also contains support for hash locked and time locked transfers;

upon these operations, the associated funds are effectively under an escrow by the

ledger, thus, they don’t form a part of any account balance temporarily. Hash-locked

transfers have an associated deadline, after which the sender can revoke the transfer.

In their current form, our hash-locked and time-locked transfers are not able to

support the same kind of HTLCs as Bitcoin; as later discussed, we are focusing

on different integration solutions. That being said, Bitcoin-style HTLC support for

third-party free atomic swaps can be introduced in our model and implementation.

Last but not least, we support direct withdrawals: that is, accounts can be

authorized to withdraw funds from other accounts up to an allowance controlled by

the owner of the source address. The associated allowance management data is also

part of the ledger.

2.2 Ledger update management

We argue that currently, the most practical and risk-minimizing technical

approach for a retail CBDC is a high-performance consortial DLT core

with indirect (financial intermediary based) end user access. At the same

time, the CBDC should remain a direct claim on the central bank; that is,

a hybrid CBDC. We also describe our prototype implementation of this

pattern.

Architecture: hybrid CBDC with DLT core

By update management of a CBDC ledger, we mean the mechanisms through

which the integrity of the ledger is maintained; that is, the processes for

1. initializing the ledger,

2. accepting of refusing incoming transactions for processing,

3. ordering incoming transactions (even if only partially),

4. determining whether the initiator of the transaction is authorized to request

the transaction and other logical prerequisites and business constraints are met,

5. determining the ledger updates the acceptance of the transaction lead to and

6. modifying the accepted-as-current status of the ledger accordingly.
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Clearly, these activities can be fulfilled even by a classic, centralized system,

operated by a central bank. Mathematical techniques (primarily in the authenticated

data structures and zero-knowledge proof domains) are also becoming available, which,

by releasing a series of cryptographic ”commitments” to the current state of the

ledger, ensure that the maintainer of the database (in our case, a central bank) can

perform neither retroactive nor ”unathorized” (e.g., modifying the owners of funds

without following the established and published procedures) modifications without

these becoming evident.

Still, numerous – if not most – central banks are looking into Distributed Ledger

Technology (DLT) based CBDC implementations31; with many DLTs being based

on blockchain technology. In the following, when necessary, we will refer to CBDCs

relying on a DLT technological basis as dCBDC.

2.2.1 Rationales for DLT platforms

Why would a central bank strive for creating a dCBDC? It is worth to look at the

potential benefits, as they are rather specific to the CBDC application.

To prepare our argument, we have to point out that ”distributed trust” with

respect to ledger state maintenance – beside algorithmic currency issuance, the original

core tenet of cryptocurrencies – is arguably not the cornerstone DLT capability for

dCBDCs, at least not how we understand it in the context of public, unpermissioned

blockchain networks.

It is easy to argue that a dCBDC does not need the financially incentivized

”distributed trust” and ”algorithmic money” issuance aspects of cryptocurrency

blockchain networks. The second statement is obvious; with respect to the first

statement, it is hard to imagine a scenario where a central bank truly wants to mirror

cash with a CBDC to the extent that it does not retain at least the option of strong

control over transactions of the asset. (Apart from legal requirements, an electronic

asset with the untraceability and uncontrollability of cash and without its natural,

physical burdens of movement would pose unacceptable illicit activity related as well

as systemic risks.)

Theoretically, it does not deterministically follow from a requirement for strong

control over the asset that the central bank should have a definitive say in the set

and approach of parties jointly maintaining the ledger through some form of majority

consensus (if there are actually multiple parties); but from a practical point of view,

this will be a requirement32. On the other hand, if we opt for a so-called permissioned

31The site https://cbdctracker.org/ provides a good global overview, with the ability for

comparisons along multiple dimensions – including the ”DLT nature” of the CBDC projects.
32Until recently, the majority ”mining power” of the Bitcoin network – with simplification: the

weight to influence the currently accepted distributed ledger state – was located in the People’s

Republic of China, meaning that no other sovereign state could – or should – even theoretically

contemplate using bitcoin as ”money”.
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DLT, where a controlled set of parties participate in ledger maintenance, then trust

will be much less ”distributed” – so won’t the public be far less inclined to truly

”trust” the CBDC solution?

This is actually a false argument. We should realize that it can’t be the goal of

a CBDC to eliminate the need to trust central banks – this follows, by definition,

from the expression ”Central Bank Digital Currency”33. We should, then, look for

the DLT benefits in other areas.

Following a similar train of thought, various industries have already created quality

models to find the various business value creating applications of DLTs. Maybe the

most complete is the Blockchain Value Framework34 of the World Economic Forum,

which looks at ”value drivers” – that is, established DLT use case categories as

payments, process automation, ”track and trace”, records reconciliation, marketplace

creation, . . . – and identifies how these can lead to

• improving profitability and quality, or

• increasing transparency among parties, or

• reinventing products and processes.

In the WEF framework, DLT capabilities constitute the ”glue” between use cases

and these key dimensions. The WEF capabilities include the following35:

1. Automation – smart contract based automatic business rule execution.

2. Full traceability – as a rule, blockchain-based DLTs maintain a complete

transaction journal.

3. Speed and efficiency – multiparty cooperations can become more efficient

with a single, common authoritative ledger of the ”common business” of the

parties, especially when earlier necessary intermediaries are also eliminated

during the process.

4. Evidence (of) tampering: attempts to modify historical transaction data

in the journal can be made straightforward to detect.

5. Distributed: ledger data is stored and maintained in a highly replicated

manner, with a majority consensus process applied to incoming transactions.

6. Holistic view: a DLT can act as an authoritative ”single source of truth” to

all stakeholders. This capability is especially powerful when multiple business

33As a brief aside, one can also argue that using traditional cash implies a level of trust in the

central bank, too.
34http://www3.weforum.org/docs/WEF_Building_Value_with_Blockchain.pdf
35This list is slightly abridged as well as slightly modified – reflecting the view of the authors on

the topic.
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cooperation types are connected by a DLT (possibly in an incremental manner);

e.g., financial institutions entering a supply chain management DLT with

various trade finance offerings.

7. DAx (Decentralized Autonomous x): by encoding sophisticated business

rule sets in smart contracts in a transparent manner, autonomous organizations,

products, services, . . . can be created.

8. Enhanced identity: see earlier with respect to SSIs.

9. Tokenization and digital assets: digital representation, ownership manage-

ment and transfer of physical assets. (For financial instruments, the capability

is very widely known.)

Purpose-built quality models are appearing for other domains, too – as, for

instance, the Internet of Things (IoT), robotics and security services.

A full, structured analysis of the potential DLT benefits for CBDCs is beyond

the scope of this paper. It is evident, however, that point 5 in itself offers a very

strong driver, even if it is solely the central bank itself who operates the nodes of

the network. The dependability and security benefits stemming from the distributed

nature of DLTs can be a very strong proposition even in a ”single organization”

setting, providing defenses against malicious (internal) modification attempts at a

single node as well as a wide range of software, hardware and communication fault

classes. Point 8 may also prove to be a strong secondary driver in the mid-term.

Additionally, for CBDC-based applications, essentially all remaining points can

carry significant benefits. However, for applications a more serious analysis is necessary,

as it can be quite context-dependent and situational that whether a DLT-based

approach is the most beneficial (among others, the exact nature of the assumed

underlying dCBDC has to be considered).

2.2.2 dCBDCs and DLT types

To create a wide-access (retail) CBDC implementation on a DLT basis, first and

foremost a DLT network type36 has to be selected.

• Public-unpermissioned distributed ledgers, such as the major cryptocur-

rency blockchains as Bitcoin and Ethereum, offer a mirage of true ”distributed

trust”. However, ”outsourcing” ledger maintenance almost fully to the main-

tainers of anonymous peer to peer systems has such risks which are not bearable

for a central bank; there has to be a true, non-probabilistic guarantee in place

that malicious actors (state or private) cannot gain the power to make majority

36One can argue that wholesale CBDCs are almost ”by defintition” consortial – closed, permissioned

– networks.
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decisions about ledger updates and authoritative ledger content. Additionally,

these networks currently lack the required performance and their cost to use

is largely unpredictable. (See also our comments on stablecoin-CBDCs in the

previous subsection.)

• Public-permissioned DLTs distribute the required trust in honest ledger

maintenance among a set of known parties across whom a sufficiently large

malicious clique is unlikely to form. At the same time, the network remains

openly accessible for the general public. These types of networks are steadily

emerging and usually address a specific sector and its challenges (e.g., the

Sovrin network in identity management, the XRP Ledger37 for cross-border

payments, the Energy Web Chain in the energy industry). In theory, these

networks can be scaled to the performance required by a CBDC; the core

challenges of creating a public-permissioned dCBDC are

– finding a sufficiently trustworthy set of peers for ledger maintenance;

– securing the network sufficiently against all attacks (with an emphasis on

smart contract vulnerabilities and common mode software faults across

the machines in the network),

– creating the appropriate level of privacy on the publicly accessible ledger –

the applicable technologies are still rather new; and

– if user-deployed smart contracts are supported, ensuring that they don’t

compromise the performance of the network and can’t perform financial

operations which are illegal or don’t comply with financial regulations (as,

e.g., unlicensed money lending).

• Private-permissioned, or consortial DLTs are maintained by a set of organi-

zations (usually with a majority-vote like mechanism on transactions) and are

accessible only to a controlled set of actors. In addition to the same (maintainer)

consortium forming problem which arises in public-permissioned networks38, a

consortial CBDC in itself, by definition, is not widely accessible.

It’s easy to see that all three DLT network types pose significant challenges for CBDC

application. Our stance on choosing a network type can be summarized as follows.

• Direct CBDC issuance on a public-permissioned network or incentivizing a

public-permissioned one with a CBDC is right now not a practically viable

option.

37https://xrpl.org/
38Participants of public-unpermissioned networks are incentivized with the native cryptocurrency

of the network; whether this would be a viable approach with a retail CBDC seems to be an open

question.
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• Public-permissioned networks are an option for retail CBDCs, possibly imple-

menting a direct CBDC. (Notice that while the BIS architectures do ”rhyme”

with the DLT types, there’s not a one to one correspondence by any means.)

However, from a technological risk management point of view (chiefly: security

and performance), a direct-access CBDC promises to be a rather risky proposi-

tion, even if the network is created by directly reusing the ”battle hardened”

software of large, established cryptocurrency networks.

• A core consortial network with a perimeter of authorized gateways is a viable

and appropriate choice for a CBDC, with practically the only serious drawback

– if we treat it as such – that the public, lacking direct access, can not directly

verify the contents of the ledger.

2.2.3 A hybrid CBDC with a consortial DLT core

The architecture we propose and implemented in a research prototype implements a

CBDC ledger architecture and DLT system architecture pattern which are structurally

very similar to each other:

• (a form of) hybrid CBDCs, and

• a consortial DLT network with gateway-based access for users.

The architecture is demonstrated by Figure 4. This architecture bears strong similar-

ities with [7], which was published mid-way of our prototype project and acted as a

confirmation of our approach.

The core CBDC DLT is a Hyperledger Fabric network. Hyperledger Fabric (HLF) is

a blockchain framework in the Hyperledger umbrella project (under the stewardship of

the Linux Foundation), one of the leading platforms for creating consortial blockchain

networks in the support of cross-organizational cooperation. Authentication and

authorization in HLF networks is based on standard, enterprise PKI; however, as we

will see, in our case this will involve only the central bank and financial institutions

and not the retail CBDC end users.

The data model and transactions are implemented as HLF smart contracts – in

HLF parlance, chaincode. One of the key features of HLF is that it supports a range

of classic programming languages and not (just) blockchain specific ones, as the

Solidity language, which targets primarily the Ethereum platform – in our current

project, we used JavaScript (for which HFL supports the Node.js runtime).

Also, the performance capacity of a HLF network can be the subject of proper

design for performance and very high throughputs and low latencies are achievable,

without resorting to additional overlay techniques.

In this paper, we do not describe the specific ledger key-value model and the

chaincode implementation in great technical detail; the API documentation of the
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Figure 4: High-level architecture of the CBDC research demonstrator

ledger chaincode is available from the authors on request. The data model is an

implementation of the logical CBDC ledger model on Figure 3.

To note is that although the CDBC core API was not designed to accept Ethereum

transaction requests per se, transactions originating in the end user applications (e.g.,

wallets; see below) very closely resemble those by structure and content. Handling

addresses, transaction content signing and signature checks are actually performed

across the board by using the official Ethereum web3.js JavaScript API.

To prevent replay attacks, we also maintain a nonce for each pseudonymous

account in a way very similar the Ethereum; each transaction originating ”from”

an account has to have a larger nonce field than what is recorded for the account.

(And after a successful transaction, the nonce is increased by one for the originating

account.) A difference from the Ethereum network is that the system expects trans-

action nonces to be exactly one higher than the recorded ”number of transactions

already performed from the originating account”; if the transaction nonce is more

than one bigger, then the transaction is refused and not ”put on hold” until the

presumably missing transactions arrive.

Authorized financial institutions (FIs) provide a gateway/access layer to the

core system. Their role is twofold: monetary as well as technical.

From the monetary point of view, in our current model, financial institutions

mint CBDC to end-users upon request, to the extent allowed to them by the central

bank.

To this end, end users first register one or more address through an FI on the

CBDC ledger; crucially, the end user keeps the private keys private and such a request

is only complemented by the registering FI with KYC information. This gives room

to a great deal of variability and different scenarios; incumbent banks will find it easy

to provide KYC for their already existing customers, while other, potentially novel
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intermediaries – ”financial institutions” only in a very broad sense – can provide easy

account registration with low KYC levels (e.g., based on mobile phone identification,

which, among others, mobile operator companies can easily perform).

The end user having one or more registered accounts can initiate the minting

of CBDC to those accounts. Our current model does not tie CBDC minting to the

FI through which an address was registered; we envision a ”multi-entrance” model,

where, as a rule, indirect access to the CBDC system is provided by any FI for a

small nominal fee (subject to free market mechanisms in pricing) – or for free, e.g., if

the end user is otherwise a customer of the FI.

That being said, minting in the current model is envisioned predominantly as a

conversion operation – directly from retail accounts or cash (e.g., for the clients of

banks) or by ”buying CBDC” through payment providers (which can be a compelling

option for mobile operators if they wish to enter this service space). For such

conversions, the party authorized and requested for minting can certainly require

an account to be registered through them. The non-CBDC leg of the mechanisms

associated with minting CBDCs – and its reverse, ”burning”, that is, conversion back

to some other form of money – will be varied; the research prototype only goes so

far as to enforce the central bank set allowances of FIs.

We would like to note here that direct governmental transfers (and earmarked or

”colored”, as well as ”expiring” CBDC) are not ruled out in our current model by

any means; a prototype implementation would be rather straightforward.

Also, from the point of view of societal inclusion in using digital money and

digital money transfers, we would like to note here that schemes are possible where

not even a mobile phone is necessary to participate in CBDC usage. At least in

theory, the digital signing capabilities of modern electronic identity cards can be tied

into a CBDC system and provide a form of government-supplied, ”citizen default”

access.

Non-government issued physical smart cards can also provide access through

their cryptographic capabilities and pre-registered keys – albeit most probably with

low KYC levels and thus serious restrictions on transfers. (Whether these cards can

be used in an offline manner is another, orthogonal concern, outside the scope of our

current research.)

From the technical point of view, FIs act as access gateways; they ”forward”

the digitally signed requests of the end users to the core CBDC ledger (for actual

CBDC transaction requests as transfers, hashlocks and timelocks; administrative

matters, as for instance, registering addresses, are certainly handled differently).

As the gateway role is provided by licensed and regulated organizations, their

participation can be tied to enforcing basic security controls as a first line of defense,

including rate-limiting the incoming transactions and combating denial of service

attack attempts.
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Figure 5: Central bank admin client prototype

We have implemented a prototype for the FI gateway functionality which supports

end user access as well as FI administrative access. In a similar manner, we have

prototyped a server for central bank operations. Both the central bank and FI

gateways provide REST APIs downstream; the Swagger documentation is available

from the authors upon request.

The user layer constitutes end user applications which communicate with the middle

layer through REST API calls. Our current implementation relies on password-based

authentication and constitutes desktop clients; however, due to the REST API based

approach, both the security model and delivery model are easily adaptable. (E.g.,

certificate-based authorization and mobile clients.)

Figures 5 through 8 demonstrate user access. Note that the GUI capabilities closely

match the upstream REST API interfaces, thus they also give a good, nontechnical

overview of the operation which can be requested at that level.
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Figure 6: Financial institution client prototype

Figure 7: Retail end user wallet prototype
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Figure 8: Retail end user wallet prototype – multiple account capability
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2.3 Smart contract support

Wide access to smart contract deployment capability is inadvisable for a

dCBDC due to dependability and security risks. Instead, CBDC liquidity

for smart contracts can be realized with integration schemes, such as bridg-

ing. Our demonstrator includes a Hyperledger Cactus based centralized

bridging solution (see in later sections). For regulatory control of financial

activities on the foreign side, we created an initial customized consensus

implementation for Hyperledger Burrow.

Bridging and other integrations instead of smart contracts

Up until this point, we did not discuss the extensibility of the system by user-

provided smart contracts: whether holders of CBDC (or financial institutions) should

be able to deploy smart contracts to the system.

In our view, the answer to this question is a very clear no; the functional scope

of the dCBDC should be limited, and focus on the direct electronic money aspects

of the CDBC it provides the bookkeeping for. Our argumentation starts from the

premise that the user-perceived availability, reliability and security of a CBDC system

is critical, if it is to supplement other forms of electronic money as the ”most trusted”

option.

As a consequence, neither the performance (and possibly availability), nor the

(percieved) security implications of ”user programmability” are acceptable.

On the performance side, the resource usage of smart contracts has to be controlled

– after all, a DLT is only a network of computers with finite capacity. The Ethereum

mainnet solves the finite capacity problem with a payment-for-execution-steps scheme,

where the unit price changes with overall demand; however, this only seems to be

a solution, as high utilization (with high prices) renders the network effectively

unavailable for large numbers of users by at least temporarily ”pricing them out”.

This is not a viable approach for a CBDC.

Consortial-permissioned networks, such as Hyperledger Fabric ones, do not have

to use such payment schemes; for these, simple timeout mechanisms (e.g., a smart

contract can run at most for 5 seconds) suffice. However, overall overload of the

system still has to be avoided, meaning that at the very least, the set of smart

contracts available for execution has to be under control. As a consequence, schemes

as hosting well-screened and vetted smart contracts (e.g., to support government

services) are possible, but general ”user programmability” is not adivsable.

Security is another critical aspect, where the actual problem is not necessarily

straightforward. Blockchain platforms functionally isolate smart contracts to a great
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degree; software vulnerabilities in a smart contract should not be able to have any

impact on other smart contracts (and the system as a whole).

However, these technical defenses are not enough from a public perception point

of view. The infamous DAO attack on the Ethereum network was due to a smart

contract vulnerability; the platform itself functioned as specified. Still, 60 million USD

worth of Ether was stolen, prompting the majority of the community of Ethereum

node operators to collectively roll back the state of the blockchain, reversing this

fiasco which was deemed unbearable from a public perception point of view. Should

we allow then the possibility of DAO-like attack on a dCBDC open?

The well-recognized and numerous benefits of CBDCs can be realized without

broad smart contract support, too. At the same time, in a broader societal and

economic context, providing limited functionality and ”robbing” the end users of the

option of customizability does put constraints on innovation and experimentation

with novel financial, business and collaboration models.

The solution to this conundrum lies in blockchain integration and interoperability

solutions. Many existing interoperability schemes of the cryptocurrency world have

potential dCBDC applications which can extend the potential use cases of otherwise

restricted-functionality CBDCs – albeit not without some additional risks.

As an example: the same way Bitcoin can be ”locked down” on the public BTC

ledger, subsequently issued and used on the Ethereum mainnet as a token, and finally

released on the BTC ledger (while the token is also burned), a dCBDC may support

creating CBDC-based liquidity on so-called ”sidechain” distributed ledgers. Or as

batches of Ethereum transactions can now be ”rolled up” (ordered and executed)

by a third party who may register only partial data about the transactions on the

mainnet, a dCBDC may support rollup schemes to offload transaction execution as

well as to limit the on-chain tracked data strictly to the digital currency aspects

(emphatically not including data that the parties participating in the rollup scheme

deem private or confidential).

However, what the terms ”integration” and ”interoperability” mean in general is

becoming increasingly hard to describe with any level of sufficient technical specificity;

new challenges of blockchain interoperability and approaches to address them have

been appearing at a significant pace for years now. A reasonably general survey –

and a taxonomy – is provided by [4]. A large (and quite representative) class of

interoperability patterns is employed for scaling of Ethereum – and documented very

well on ethereum.org39. For cross-organizational settings, the whitepaper of the

Hyperledger Cactus project provides a good overview40.

For our demonstrator, we implemented centralized bridging ; authorized financial

institutions can receive requests to ”move” amounts of CBDC to another ledger.

39https://ethereum.org/en/developers/docs/layer-2-scaling/
40https://github.com/hyperledger/cactus/blob/main/whitepaper/whitepaper.md
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Technically, this means that the funds of the requester become locked-down with the

financial insitution, who instructs the ”other (foreign) side” (in our case: a consortial

Ethereum network) to create the equivalent funds for the requester. The foreign

ledger can then use these funds in smart contracts; the bridge is responsible for

”bringing back” the funds to the CBDC ledger upon request.

Broadly speaking, the other integration schemes – such as rollups – are variants of

this theme; the CBDC ledger is used to ”back” more sophisticated operations on one

or more different ledgers (which are not necessarily distributed and not necessarily

blockchain-based).

The conceptual problem with these integration approaches borrowed from the

cryptocurrency world is that a CBDC will be a controlled asset; temporary release

to a different ledger does not mean that a central bank is willing to lose all control

(temporarily). Importantly, KYC and AML regulations are still to be adhered to.

The technical and conceptual solutions to this problem are still in early stages;

in our work, we created a modified consensus algorithm for Hyperledger Burrow

– a blockchain framework which is able to run Ethereum smart contracts – which

allows central banks to set and monitor whitelisting/blacklisting rules without the

modification of smart contracts. This development was not integrated into the final

demonstrator.
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3 Associating the physical word with smart contract el-

ements

3.1 Smart contracts in industrial use cases

The benefits of using blockchain (BC) technologies for recording transactions in

industrial use-cases outweighs the drawbacks of it. The speed, reliability, security,

immutability and traceability, to name a few advantages provided, can be of great

value for most companies. However, there could be obstacles in some special cases.

One of the basic principles of many blockchain scenarios is that the ledger is

distributed, so there are no authorities, and every account is equal. These are great

things, but in a business-to-business case or within some industrial setting, it might

be needed to have some sort of authority over a group of accounts. Companies

are is usually organized hierarchically, and consist of many divisions or even have

subsidiaries. Since a division is a part of a company, there are certain dependencies –

and a division is often not an autonomous entity, so it can’t do whatever it wants.

Logically, it doesn’t make sense to give away accounts that are fully independent to

every device the company wants to connect to the blockchain (or use its ledger).

Companies’ acceptance of using blockchain technologies in their operations can

only be improved if the problem of authority over their own accounts is solved, or if

there is a viable alternative that overcomes the related obstacles.

3.2 Individual and shared accounts for company-bound devices

Suppose there are multiple companies that are working together, or are part of a

supply chain, for example, the manufacturer, suppliers, shipping companies etc. They

are considering using blockchain to track where each part of the product or the final

product itself is in the supply chain.

Let’s look at an archetypical shipping company. They might have devices such as

cranes, chain-hoists, robotic arms or conveyor belts in their parcel center, where they

want to keep track of the locations of the assets (in this case: packages). Tracking

can simple mean that we know for each given point of time: which robotic arm has

the asset or which conveyor belt is carrying it.

The abstract model for tracking ”ownership” of assets in this setting is that when

the device takes or handles a given asset, it takes the ”ownership” for it as well. The

device does not only create a record in an event log about this, but at the same time

”pays” for the ownership, as well.

As an example: if a robotic arm picks up a package, it sends a transaction to the

blockchain that it has the package, and ”pays” a token at the same time (it might be

the case that a robotic arm can only handle a predetermined number of packages a
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day). Since these devices are in the same company (or the same division), they have

to be grouped together on blockchain, and establish some form of hierarchy.

3.3 Issues with using individual accounts

A possible solution could be that every device has an own account on the given

blockchain, with an own balance. This way it is obvious where an asset is and which

device handles it, since the device becomes the ’owner’ of the asset. The problem

with this approach is that it is not possible to deauthorize a device to handle assets,

because every account (i.e., externally owned account on the Ethereum blockchain)

has the same rights, and is independent of the other accounts. Another problem is

that anybody on the blockchain can see the exact location of every asset (which

device handles it). For example, the manufacturer doesn’t need to know the exact

location of an asset in the supplier’s factory (even if it is just an account address), it

only needs to know which member of the supply chain has the particular asset.

3.4 Issues with using shared accounts

The other approach could be that every device use the same account. It solves the

problem of individual locations, but introduces many more. Obviously, an outside

party could not tell the exact location, but nobody else either. The company would

not be able to tell where an asset is without individual identifiers, such as wallet

addresses. The other problem is even worse: since every device uses the same address,

every one of them knows the private keys of the account, so they could send any

transaction they wanted to, which is unacceptable and could cause serious losses.

3.5 Companies represented through smart contracts

On many BC platforms (i.e., including the Ethereum blockchain), it is possible to

deploy smart contracts, which is a huge advantage compared to other blockchains

without this feature. Using smart contracts, it is possible to solve the aforementioned

problems.

One possible solution is the following. Every company is represented as a smart

contract on the blockchain, where it has an address, just like the externally owned

accounts, making the use of smart contracts invisible to the outside world. Inside the

smart contract, there are two key-value lists: the first one (i.e., authorized) tells if

an address is part of the company and therefore allowed to initiate transaction on

behalf of the company. The other one (i.e., allowance) stores the maximum amount

each address is allowed to spend from the company’s balance. The combination of

the two lists makes it possible to easily manage the individual limits and rights of

every device of the company.
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Using this approach, every device has an own, unique address, so it is known

exactly where an asset is, and it is possible to keep a history of previous transactions

of each device.

The company’s smart contract has to be deployed by an administrator of the

company, who will authorize and manage the allowances of the accounts that are

in the same logical group that the smart contract represents (e.g., a floor, office,

division, the whole company).

In this initial example, the group is a company, but it can be any subset or superset

as well. Initially, every individual address is excluded from the list of authorized

addresses, so none of the accounts can initiate transactions on behalf of the company.

The authorized addresses are added by the administrator, and by default, their

allowance is 0. Allowances also have to be defined explicitly for each address to ensure

that every account has the sufficient allowance and to prevent overspending. The

administrator can also deauthorize addresses. In this case, the address will no longer

be able to initiate transactions in the name of the company, and at the same time,

the allowance of the address will be set to 0 to prevent inconsistencies in the state of

the contract.

The transaction steps on how an asset’s ownership gets exchanged in our model

is depicted by Figure 9. The blockchain stores various Asset Contracts and Token

Contracts. The Asset Contract stores the ownership information regarding the given

asset – in this case, bound to the Company address. The Token Contract stores

information of the token balances of the individual wallets as well as the balances of

company contracts, and transfers the tokens between them. Besides, as the Figure

shows, the company takes care of authorising and keeping track of the allowances of

their ”devices” (that are represented as wallets).

Those devices that are part of a company, instead of calling the main contract

(that handles transactions, assets etc), have to call the contract of the company. The

individual devices do not have separate balances, instead they can spend from the

company’s balance, as long as their allowance is enough to pay for the asset. If the

caller address is authorized in the company, and the total cost of the transaction is less

than the allowance of the caller, the company contract will handle the transaction and

buy the asset. In this case, the bought asset will be owned by the company contract,

so the outside world will only know which company has the asset, but not the exact

device inside the company. The company contract will record the transaction and

the address of the device that initiated the transaction. After the transaction, the

buyer device’s allowance will be lowered by the amount of the transaction cost.

Representing companies as smart contracts has multiple benefits, such as:

• Authorization management
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Figure 9: Steps of a transaction initiated by a member of a company

• Set spending limits to prevent overspending

• Realistic ownership (an asset is owned by a company, not by a device)

• Hides the exact address from the outside world

• Assets can still be tracked inside the company

This approach also allows that a device can be a part of multiple companies at

same time, and can initiate transactions on their own, not in the company’s name

while being registered as a member of one or more companies. This is safe and does

not present any threat to the company’s balance, because the individual accounts

don’t have tokens (that belong to the company) tied to their addresses, so it is not

possible that an address uses the company’s funds and becomes the owner of the

asset instead of the company. Besides this, accounts can have own funds that they
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can spend however they want. This is completely independent of their allowances at

specific companies.
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4 Demonstrator environment

4.1 General overview of the multi-level CBDC demonstrator

The abstract representation of the multi-level architecture for the demonstrator

is depicted by Figure 10. Let us briefly describe the demonstrator through this

illustration, from bottom to top.

On the physical level there are devices that handle – create, move, transfer, receive

– assets. The devices in our demonstrator are various robotic arms and conveyor belts,

whereas the asset is a little rubber duck.

This physical level has one speciality that is not necessary but advisable: it is

created as a service oriented architecture. In here, systems are providing and/or

consuming ”services”, where a service can be information exchange – or even exchange

of physical assets. Systems are loosely coupled, the connection is created through late

binding, and the service consumers find producers through discovery or lookup. This

service oriented architecture in our demonstration is provided through the Arrowhead

Framework. Figure 10 shows the loosely coupled systems with green colour.

The next level is the Smart contracts associated with the interaction between

companies and their devices. The ownership and allowances are exchanged here;

the underlying ideas are described in Chapter 3. This is implemented on a private

Ethereum blockchain network, marked as blue in Figure 10.

The CBDC smart contract, where the monetary transactions happen with the

involvement of digital currency, resides at the highest level of the demonstration

architecture. This is implemented on Hyperlegder Fabric, as the hosting blockchain

network – marked as blue on the top of Figure 10.

The two smart contract infrastructures can be completely independent from each

other. This gives great flexibility for the (industrial) companies and their ecosystems

(on how they recording their transactions) as well as to financial institutions using

traditional or digital currencies. As part of the demonstrator we have implemented a

bridge between two widely used platforms, Ethereum and the Hyperledger Fabric.

This is implemented through Hyperledger Cactus, and marked as an orange bridge

in Figure 10.

4.2 Getting physical: devices and their transactions

During the demonstration there are several companies that provide services to each

other. This is demonstrated by ”creating” a rubber duck (a.k.a the asset) by one

company’s robot, ”transferring” it to another location by a conveyor belt of a different

company, then ”receiving” by a robotic arm of a third company.

At each step the devices get ownership of the asset in the smart contract, but

they transfer the fee in return to the previous owner or service provider.
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Figure 10: The simplified view of the demonstrator, where the CBDC and the

smart contract are implemented on two independent BC technology sets. Notice

the flexibility of the architecture: the physical (industrial) entities are independent

from the smart-contract’s BC, which is independent from the CDBC’s BC. All are

communicating through APIs that are standard but also secure.
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Figure 11: Physical entities at different companies access the same Smart contract.

Using Arrowhead Local Clouds provide dynamic management of physical resources

(sensors, actuators) and data security at the partner companies.

During the demonstration we see (i.e. through the monitoring GUI shown in the

Appendix, Figure 21) as the ownership of the asset gets transferred to company A,

B and C, respectively, as the demo scenario goes along.

Within each company there could be several systems or devices that are able

to provide the given service (creating the duck, transferring it, receiving it). It is

the task of the underlying Arrowhead Framework local cloud at each company to

connect the service provider systems with the service consumers. The service can be

provided in-between these Arrowhead local clouds (which can be associated with the

different companies), where one company does not have to know or care about which

given device provided the service at the other company. Once the transaction is

successful, it does not matter, between which loosely coupled devices made it happen,

the execution of the asset and token smart contracts (Ethereum, in this case) follows

up at a company level.

This architecture is represented by Figure 11.
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4.3 Smart contracts for the physical transactions: Asset and Token

These contracts are implemented in the Ethereum level that are related to the

companies, their devices, and corresponding transactions.

As described through Figure 9, the asset contract and the token contract are two

important terms in the above described, company-bound smart contracting model.

For managing and keeping track of availability, amount, and ownership of different

types of assets, there is an asset contract. This contract stores every asset type and

their parameters, such as the address of the owner, the available quantity, and the

unit price. Anybody can add a new type of asset, view and buy existing assets, and

manage their own assets. An owner can increase or decrease the quantity available

for purchase, and update the unit price of a given asset that they have.

Anything that has to do with the assets happens on the asset contract, but

managing payments is the responsibility of the token contract. The token contract

keeps track of the balances of the individual accounts, verifies transactions, and

transfers funds between accounts.

The asset contract is linked to the token contract, so every time someone buys an

asset, the token contract needs to be called, and is also called by the asset contract.

It is similar to when someone wants to sell their house, they ask a real estate agent

to sell the house on their behalf. The agent is not the owner of the house, but they

are authorized by the seller to sell it.

The reference implementation of the smart contracts are briefly described in the

Appendix I as Chapter B. The Asset monitoring GUI is briefly described in Appendix

II as Chapter C.

4.4 Supplying CBDC to the smart contract platform

In the demonstrator, the platform running the smart contracts is supplied with

CBDC through a mechanism which the cryptocurrency world calls bridging.

Informally, ”bridging out” an asset from a (”home”) ledger to another (”foreign”)

one involves the following key steps:

• A user initiates a special transaction on the home ledger, locking the funds to

be bridged.

• The party responsible for the bridging operation (or multiple parties, as de-

centralized solutions exist, too) is notified about the bridging intent; as a

consequence, it takes ownerhip of the to-be bridged assets and instructs the

foreign ledger to create tokens representing the assets locked on the home side.

These new tokens are typically put under the ownership of the initiating party.

• The tokens representing the bridged funds on the home side can be used in

transactions in the foreign network.
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Figure 12: Bridging CBDC to the industrial smart contract platform.

• When an owner of bridged-out tokens wants to receive the equivalent CBDC on

the home ledger instead, he or she ”burns” the tokens via the smart contract

handling them.

• The bridging party/parties get notified and release CBDC on the home side to

the appropriate account.

To implement bridging, we used the Hyperledger Cactus project in the demon-

strator. Figure 12 depicts the architectural setup.

5 Demonstrator scenario descriptions

Figure 13 shows the simplified dialogue sequence for the demonstrator from the

physical (Arrowhead-bound) devices through the Ethereum smart contract to the

Hyperledger-based CBDC.

Besides, the following subsections briefly describe the scenario steps that applies

for this diagram, moreover, the scenarios described in Figure 9.

5.1 Adding new assets

A user can add a new asset that they want to sell by calling the createAsset function.

This function takes two parameters: the first one is the unit price, that specifies how

much one unit of the new asset costs, and the second one is the quantity of the new

asset that is up for sale. The new asset will have a unique ID, that identifies the

asset, and the asset will be tied to the caller of the function (the seller of the asset).
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Figure 13: The simplified dialogue sequence chart of the demonstrator.

46



5.2 Buying an asset

5.2.1 Before calling the buyAsset function

By default, calling only the buyAsset function of the asset contract will result in

reverting the transaction because the asset contract is not allowed to transfer funds

on behalf of the buyer. To prevent this, before buying a specific asset by calling the

buyAsset function, the buyer must call the approve function of the token contract

first that authorizes the asset contract to initiate the transfer of the funds from

the account of the buyer to the account of the seller. The allowance is passed as a

parameter of the approve function as well as the address of the asset contract. After

calling this function, the asset contract will be authorized to spend money from the

buyer’s account (but not more than the allowance), so it is recommended to call the

approve function every time before buying an asset with the exact amount given as

the parameter.

5.2.2 Buying the asset

To buy an asset, a user has to call the buyAsset function with two parameters: 1) the

ID of the asset, 2) the number of units he/she wants to buy. If the requested amount

exceeds the available amount of the given asset, the transaction will be reverted. This

function will call the transferFrom function of the token contract, which transfers

the total amount of money that needs to be paid to the seller for the assets. If the

buyer has authorized the asset contract to transfer the necessary amount from their

account before trying to buy the asset, and they have sufficient funds, the transaction

will be successful, and the buyer becomes the new owner of the asset(s).

5.3 Increasing or decreasing quantity

It is necessary for an owner to be able to update the available quantity of an asset.

It might be needed, for example, if there is a restock or some units become damaged

and are no longer in a condition to be up for sale. In this case, the owner of an

asset can call the addAsset or the removeAsset function to increase or decrease the

quantity, respectively. Both functions take to parameters: the ID of the asset, and

the difference between the old and the new quantities. In case of the removeAsset

function, if the quantity to be subtracted is larger than the current quantity, the

transaction will be reverted and the existing quantity will not be changed. The

quantity of a given asset can only be change by its owner.

5.4 Updating the unit price of an asset

Another useful feature is the ability to change the unit price of an asset. One thing

to keep in mind is that it is not possible to differentiate between units of the same
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asset. Changing the unit price results in every unit costing the new amount of money

thereafter. If it is needed to have a separate batch of an asset that costs more or less

than the others, a new asset has to be created with the new price and the quantity

of the batch.

6 Summary

In this work, we have reported on the design and prototyping of

• a Hyperledger Fabric based retail CBDC system,

• an industrial smart contract application,

• the Hyperledger Fabric based issuance of CBDC to the blockchain supporting

the industrial cooperation

• and the usage of the so created funds in the industrial cooperation smart

contracts.

To the best of the knowledge of the authors, these initial results are at the forefront

of CBDC and CBDC application R&D; hoever, at the same time, they are not final

and definitive – rather, should be treated enablers of further research.

After this initial demonstration, the most important avenues of research also seem

to be clear: on the one hand, the impact of CBDC availability on smart contract use

cases should be assessed in a structured manner and on the other hand, the pros and

cons of the various blockchain integration approaches – of which bridging is just one

– should be identified.
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A Key demoed workflows of the CBDC component

The following figures document the internal interaction flows of the key demo scenarios

of the CBDC-demonstrator.

Figure 14: Alice, a customer of FI, requests the minting of CBDC to one of her

addresses from an FI. Previously, an appropriate CBDC minting allowance has been

set for the FI by a central bank employee.
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Figure 15: Alice queries the current nonce from the CBDC DLT through an FI for

one of her addresses. Using that nonce, she assembles and signs a transfer transaction

request to one of Bob’s addresses. She gives the signed transaction request to an FI,

which forwards it to the CBDC DLT.
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Figure 16: Hash-locked transfer.
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Figure 17: Direct withdrawal.
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B A reference implementation for the related smart

contracts

We have created a reference implementation of the contract to demonstrate that

the idea of companies as smart contracts is in fact a possible solution to the initial

problem. The code was written in Solidity [18] and the 0.8.4 compiler version was

used to compile the contract.

Figure 18: Class diagram of the Company contract

Figure 18 shows the class diagram of the Company contract. It can be seen that

the constructor needs the address of a token contract (i.e., the address of a deployed,

ERC20 compliant token contract) and the address of another contract (that (in the

example) manages the ownership of assets), so they have to exist when the company
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Figure 19: Class diagram of the Asset contract

contract is deployed to the blockchain. However, this implementation can be changed

whenever the model changes.

Figure 19 shows the class diagram of the Asset contract, which the Company

contract communicates with. It also needs the address of the same token contract

that the Company contract uses, to ensure correct token transfers. Like in the case

of the Company contract, the address of the token contract can be changed later. In

case of the Asset contract changing its token contract address, it is the responsibility

of the administrators of the companies to change their addresses accordingly and

keep them up to date at all times.

Figure 20 shows the class diagram of the ERC20 token contract. Any contract

can be used as a token contract that is ERC20 compliant. The Asset contract calls

the transferFrom method inside of its buyAsset method to initiate the payment for

the assets. For the payment to be successful, any buyer, whether it is an externally

owned account or a contract, has to approve the asset contract to transfer funds on

their behalf.

The contracts were deployed to a private Ethereum blockchain, then a series

of test were carried out, including buying from an unauthorized address, buying

from an address that is authorized but has an insufficient allowance to buy an asset,

buying from an address that is authorized and has sufficient allowance to buy an
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Figure 20: Class diagram of the ERC20 token contract
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asset, calling methods from a non-admin address that can be called only from the

admin address, etc.

The contract behaved as expected and every test case was successful during the

test.

C Asset monitoring interface

On the BME - MNB Asset Monitoring Interface the changes in the ownership

of the assets can be observed as they are recorded on the blockchain. The page shows

the assets that are added in the current session and the location (owner) of every one

of them. The locations and the corresponding balances are also listed, so it can be

verified that the transactions were successful and the funds were transferred between

the parties involved in the particular transaction.

Figure 21: The Asset Monitoring Interface

Every account is tied to an actuator (robotic arm, conveyor belt, etc.) that

handles assets. When an actuator handles an asset, it is considered to be the owner of

that asset. In case of actuators exchanging assets (for example, a robotic arm places

an asset on the conveyor belt), the receiving actuator buys the asset by calling the
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approve and buyAsset functions, in this order, as described in the previous section.

The next actuator can only obtain the asset if the payment was successful.

The Asset Monitoring Interface shows how a series of transactions happen: when

the initial owner of an asset registers the new asset, it shows up at the end of the

list. A second actuator then buys that asset, therefore becoming the new owner, and

at the same time, the funds get transferred to the account of the initial actuator.

Finally, a third actuator buys the asset from the second, becoming the final and

current owner of the asset. The list of assets and balances get updated according to

the transactions, so the current state can be observed anytime.
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