
Robust CBDC applications

László Gönczy, Pál Varga, Imre Kocsis

July 2021

Contents

1 Introduction 2

2 Notions of robustness 2

3 Robustness of DLT platforms 4
3.1 Common vulnerabilities of DLT platforms 4
3.2 Consensus and transaction execution in Hyperledger Fabric . . . 5

4 Robust smart contracts 6
4.1 Fault model . 6
4.2 Protection mechanisms . 7
4.3 Formal analysis of smart contracts 8
4.4 Validation and verification . 9

5 Vulnerability assessment 12
5.1 Applicability of general purpose vulnerability databases 12
5.2 Tools for minimizing smart contract vulnerabilities 13

5.2.1 Mythril . 13
5.2.2 Slither . 14

5.3 Dependability assessment by fault injection 14

6 Robust DLT-assisted workflow execution 16
6.1 Describing and executing workflows or business processes 16
6.2 Workflow execution - requirements and dynamics 17
6.3 Workflows at enterprise level . 18
6.4 Modeling parallel workflows at production level 19
6.5 Loose coupling and Late binding of stakeholder systems 20

6.5.1 A brief overview of the main Arrowhead concepts 21
6.5.2 The Arrowhead Framework to support DP 23

6.6 DLT-assisted workflow execution 23
6.7 Techniques for making DLT-based workflows robust 25

6.7.1 Smart Contract Design Patterns in the Ethereum Ecosystem 25
6.7.2 Further Design Patterns for Solidity 26

1

6.7.3 Creational, Structural, and Behavioral Design Patterns . 26
6.7.4 Proxy Patterns for adding modification features to Smart

Contract . 26

7 Summary: possible impacts of regulatory control enablement 27

1 Introduction

This documents introduces the general concept of (technical) robustness and de-
pendability, focusing on the execution of smart contracts over blockchain. While
smart contract code is considered as the business logic of applications, ledger
content, supporting blockchain mechanisms such as consensus and ordering,
and even client workload influences the observable robustness of a blockchain
application.

We first present the general concept of dependability, then introduce its spe-
cial applications and considerations in an enterprise blockchain. Information
sources and tools supporting vulnerability assessment and a method for system-
atic evaluation by fault injection is also presented. When it comes to actual
execution of smart contract, we approach the demonstration from industrial
usage point of view, where workflows are executed both at the enterprise level
and at the production level. Although such workflows can be described through
various ways from Business Process Modelling Notation (BPMN) to Coloured
Petri Nets (CPN), these can also be mapped to smart contracts. Being able to
describing the workflows themselves error-free is an initial step towards having
robust smart contracts based on those workflow descriptions. Describing the
necessary precautions on smart-contract-based workflow execution is also part
of the aims here.

2 Notions of robustness

First, the general concepts of dependability are introduced, in order to define the
context of technical robustness of smart contracts, and in general, blockchain-
based applications. Methods of fault tolerant computing traditionally covers
modeling, analysis and improvement of computer-based systems. While some
decades ago, the target domain of such methods were primarily mission-critical
systems, where the consequence of a fault in the system may lead to catastrophic
effects, such methods are now being used in general purpose systems as well,
most cases hidden from the end-user or even from the application developer.

Operation and maintenance of large-scale computer systems providing re-
sources for cloud services (see e.g. Site Reliability Engineering concept of
Google, [5]) or design time static verification of computer drivers in desktop
operating systems are applications of these long existing (and yet developing)
methods in everyday life. Moreover, the core ideas of blockchain based sys-
tems, including mechanisms for consensus and ordering of transactions rely on
methods which are originated in fault tolerant computing.

2

Figure 1: Dependability and security key concepts, based on [3]

Extending these apects, performability in general refers to the performance
of a system in the presence of faults. In traditional software systems, design
of performability refers to the control and parametrization of fault tolerant
mechanisms (e.g., the waiting time between two message transfer, the semantics
of communication in terms of filtering duplicate messages and ensuring integrity,
etc). so that the system will meet its performance requirements under a given
assumption of fault characteristics.

Talking about robustness, one of the key aspects is the fault propagation
chain. Following the taxonomy defined in [3], we introduce the following:

• A fault is the core deviation causing a change in the state of a ser-
vice/software. In the case of blockchain applications, an example can
be a wrong instruction in a smart contract code (e.g. using the strict
inequality operator “<” instead of “<=” in a parameter check). A fault
can be active or passive, i.e.,; there can exist many faults which will never
cause any deviation from the desired operation. In our example, if the
parameters of the smart contract will never be equal, the fault will be
dormant.

• An error is a change in the system state caused by a fault. This is still
internal to the system, i.e., the wrong value of an internal variable, which
does not necessarily lead to an observable wrong behavior.

• A failure is a user-perceivable deviation from the desired operation. In
our case, if the parameter check is a pre-condition of the execution of a
withdrawal transaction from an account, the result of a specific transaction
execution will be different from the specification.

3

Figure 2: The fault-error-failure chain

Even this small example highlights the difficulty of finding potential software
faults (“bugs”) by traditional testing: finding the above deviation would need
test cases where it is ensured that the parameters of the transaction are equal,
and given the context and result of other computational steps, the return value
of the transaction (the success of the withdrawal or the balance on the accounts
after execution) is different from the specification.

3 Robustness of DLT platforms

When associated with systems, the term robustness means the tolerance against
perturbations that may affect the systems’s functions. The robustness of a
system can be challenged by faults in the surrounding environment or threats
of unintentional misuse or deliberate attacks. Analyzing the vulnerabilities of a
system is a common way to evaluate its robustness.

3.1 Common vulnerabilities of DLT platforms

There are a number of research papers available which describe certain char-
acteristics of blockchain systems which can be exploited by targeted attacks.
Although the most well-known such attack is the “51%attack”, a simple brute-
force attack against the majority-base consensus mechanism, other threat mod-
els include partitioning of the network or injecting transactions resulting in
double-spending, with a combination of low -level network attacks and suspi-
cious participants (nodes) in the network. Such attacks target the basic opera-
tion of blockchain-based applications, exploiting the distributed nature of these
systems. However, without introducing sophisticated mechanisms to separate
or poison the nodes (which also might need significant computational power),
it is also possible to exploit the vulnerabilities of the applications running over
blockchain. This also might be performed at multiple levels:

• Attacking the protection/AAA mechanisms of the client application: if a
blockchain may accept transactions from client applications (e.g., wallets)
which have an inappropriate level of protection, then syntactically correct,
properly authorized yet malicious transactions can be injected. Although
this may lead to significant amount of loss, we do not focus on such attacks
here, since these can be prevented by using standard protection mecha-
nisms (like 2FA, OTP, etc). Wallet theft and cryptographic attacks may
be considered as part of this category as well.

4

• The blockchain network can be attacked at the network level in order to
split the network and therefore create multiple distinct subsets of nodes.
Potential attacks target the overall consensus mechanism by creating or-
phan blocks or multiple forks.

• The P2P-based mechanisms ensuring communication among nodes in the
network have many known attack vectors: delaying the consensus mecha-
nism, manipulating the time synchronization, attacking the network ser-
vices supporting routing across nodes (e.g., DNS, BGP), and, in the case
of PoW networks, attacks which corrupt the evaluation and reward of
mining are some typcial examples.

• Another, more important kind of attacks include application-level attacks
by malicious execution of smart contract code. This can be prevented
by design time analysis/verification and runtime monitoring using self-
checking and invariant-based mechanisms.

3.2 Consensus and transaction execution in Hyperledger
Fabric

Figure 3: Transaction execution in Hyperledger Fabric

The client sends a digitally signed transaction proposal to one or more of
the endorsing peers in the network. Execute: first, all endorser nodes (peers)
execute the transactions locally. This means a simulated run of the transaction,
and generation of Read-Write sets, i.e.,determining the data (technically in the
form of key-value pairs) which will be read/written from/to the ledger if the
transaction is accepted.

Answers from endorsement peers are returned to the client (digitally signed)
which uploads these to the ordering service.

5

Depending on the result of the consensus mechanism, transactions are either
accepted or rejected and blocks will be created to execute the valid transactions
(note that this point the ledger status is unchanged). After the endorsement
phase, transactions are validated, which includes the check format, the autho-
rization of the client, signature check, etc. Transactions which fail these checks
will be rejected. Valid transaction will modify the ledger state. If the transac-
tion (as a function call) has a return value, this will be actually generated in
this phase as well.

Main parameters of this mechanism include the number of transactions per
block, and the requested number of nodes to agree during the consensus. In a
consortial blockchain environment, an ” n out of n” scheme may be followed,
requiring all nodes to agree on the transaction execution. However, there is a
possibility to give different schemes as well (e.g., to ensure that one compromised
node cannot block the entire network).

4 Robust smart contracts

In order to define end evaluate robustness of smart contracts, or more precisely,
smart contract based systems, possible fault categories and protection mecha-
nisms for fault prevention/removal have to be defined.

4.1 Fault model

An initial fault model which describes the effect of deficiencies in a smart con-
tract, concentrating on observability, was presented in [14]. We assumed that
there is a reference implementation returning the correct value, so the result
of each transaction can be evaluated and unequivocally labelled as good/faulty.
Technically this can be achieved e.g., by executing carefully checked, correct
version of smart contracts and then experimenting by injecting faults as briefly
described in section 5.3. Note that the following categories do not represent
distinct sets of errors: the same contract (executing multiple transactions) may
belong to more than one of these.

Reliability failure indicates the possibility of transactions where the return
value of a contract is incorrect wrt. the specification. These are cases where the
execution returns with failure; however, since the fault categorization considers
observable behavior, it might be possible that latent errors are also present in
the same application, considering the ledger state as well.

Latent Ledger Integrity error refers to contract execution where, without any
deviation of the observable behavior, the ledger content is different from that of
the reference execution. Such errors are not discovered during the execution of
the transactions; one of the key task of designing for fault tolerance is to either
eliminate/prevent such errors or ”force” all latent errors to (even implicitly)
lead to a failure.

Abort failure represents a category where the transaction is aborted during
the endorsement phase, although it should have been accepted by the set of

6

peers.
Integrity failure refers to faults which result in a ledger modification which

violates the domain/business logic requirements (e.g., a transaction is com-
mitted which should have been aborted or the WriteSet is different from the
specification).

In the context of a CBDC workflow, such failures would correspond to trans-
actions not following the prescribed business logic. Latent here refers tot he
possibility of immediate detection, and takes us tot he determination of error
confinement region (e.g., in a transaction graph): all transactions which may be
affected by the result of an integrity violation.

4.2 Protection mechanisms

The effect of the above fault categories can be prevented/mitigated different
protection mechanisms, applied at several phases at development lifecycle.

Figure 4: Protection mechanisms for blockchain smart contracts

Design time protection includes manual and automated checks during devel-
opment. Such checks include the use (and avoidance) of certain code patterns,
manual code inspection and audit, testing and the use of automated formal
verification methods (see in more details in Sec.4.4).

Contract Self-Check are defensive programming constructs which can be in-
serted by the contract developed in order to locally evaluate the correctness.
In the case of Solidity, for instance, the require construct refers to the check of
preconditions (like values of input parameters, state variables or return value of
external function calls) while assert is used to validate invariants and catch in-
ternal (logical) errors. Such mechanisms serve as a controlled ”commit-rollback”
for smart contract execution.

Runtime Platform Checks are mechanisms which are enforced by the run-
time environment and not bound to specific contract logic. In the case of
Ethereum, these are Contract Self-Check enforced by the Ethereum Virtual Ma-
chine (EVM) like check of gas limit, array indexing, address format, etc. while
in the case of Hyperledger Fabric timeout detection result check over endors-
ing peers are such mechanisms. While these techniques work without explicit
contribution of the smart contract programmer, they have the drawback that
in some cases they only catch failures without explicit reference to the occurred
faults. Depleting gas, for instance, can be a consequence of a bad program code.

Output invariant check refers to the possibility that the client (application)
checks the return value of a transaction. Here it is important to note that
the return value and the WriteSet of the transaction are different: a return

7

value in typical smart contracts refers to the final statues of execution (e..g,
transaction successful) while the WriteSet contains the actual content to be
written to the ledger. Therefore, it is an important design decision how to reflect
the business logic, and therefore, guarantee the observability of the important
attributes of the WriteSet to the client. (Explicit query execution on ledger
content facilitates observability but leaves the control to the client application).
Client side invariant check can not only be a tool for failure detection but in
some cases (if the client is participating in the consensus mechanism, like in
Hyperledger Fabric) it can serve fault prevention purposes as well.

4.3 Formal analysis of smart contracts

As mentioned earlier, one of the most effective techniques to improve the robust-
ness of a system is formal verification. This refers to a set of mathematically
well-funded methods, where the model of a system is evaluated against a pre-
cise specification to find possible situations where a requirement is violated. The
main advantage of such methods is that an exhaustive check guarantees that
the system is free of faults.

However, such methods need a precise mathematical model and a corre-
sponding mathematical specification of the required properties. Moreover, ap-
plying formal methods directly needs significant background knowledge. To
overcome these barriers, model-driven dependability analysis methods support
the definition of formal requirements at the level of the engineering model,
and derive mathematical constructs (like logic formulae defined over a set of
constructs which refer to the structure of the engineering model, finite state
automata describing the allowed communication protocol between two parties,
etc) from such high level models.

[44] and [2] collect current state of the art on the application of formal meth-
ods in the field of smart contract analysis. According to their categorization,
most of the currently available methods consider the following elements:

• User of the system: users are generally modeled as external actors, with
the possibility to define behavior in form of sequences or processes exe-
cuted by a given class of users. This allows to distinguish between mali-
cious and normal users, and also model users with different strategies.

• (Smart) contracts: the business logic of transaction execution is captured
by smart contracts. In formal verification, the concrete programming lan-
guage is often mapped to a constructs like set and logic operators. It
is also important to note that concrete numerical values are often ab-
stracted into (ordered) intervals representing so-called equivalence classes
of concrete values. E.g., in the case of a decision about a transaction
confirmation, small, medium and large amounts can be handled differ-
ently. This approach is called qualitative abstraction and is often used in
computer-aided verification, since it helps to create compact models (more
precisely, create compact state representations of a system). Several fur-

8

ther techniques exists to facilitate the effective modeling and evaluation
of dynamic models, the interested reader is advised to consult REF.

• Ledger state: the system state in most cases is modeled by the ledger state.
This relies on the implicit assumption that the ledger stores the same in-
formation for all nodes. There are multiple already existing and emerging
technologies to support information hiding, and therefore, the observable
ledger state might be different at different nodes in the system (by using,
e.g., private data channels supported by Hyperledger Fabric); this leads
to an abstraction relation between the entire (private) and public ledger
data. Such abstraction relations are widely used in formal data modeling
and in general may lead to over-approximations (e.g., by labelling some
states of the system suspicious or undecidable instead of correct), but this
does not constraint the applicability of formal data modeling methods.

• Requirements for the system express assumptions on the behavior of the
user (e.g. input sequence), the contract and the ledger state together.

Main classes of such requirements are the following:

• Liveliness: such requirements guarantee that the system will not reach
a state during its operation where there are no further possible actions
enabled (of course, with the exception of the final state of the execution).
In broader terms, liveliness requirements cover behavior that will happen
in the system. In the context of transaction execution, an example re-
quirement can be: ”All transaction executions will return a value of the
Success, Failure set.”

• Safety : safety requirements define forbidden behavior (what should b
avoided). Such behavior is often expressed by a sequence of events/actions
or a subset of the state space of the system. An example for a safety re-
quirement can be: ”There should be no token transfer where the token
disappears during the transactions”.

• Correctness: Such requirements correspond to application/domain specific
criteria, but can be handled with similar mathematical constructs. An
example from the financial transaction processing application: after all
transaction execution, the balance of a client (end-user) must not be lower
than the threshold set to the account.

Besides describing the general requirements on smart contracts, there are
domain-specific extensions to capture requirement fragments (expressed
often as ”clauses”) typical to a certain application domain. The advan-
tage of such reusable fragments is that these can be mapped to reusable
verification criteria and program code as well.

4.4 Validation and verification

Smart contracts, just like any other piece of software, require validation and ver-
ification in order to ensure requirement compliance. Validation is the process of

9

checking whether the design of the software meets high level requirements (i.e.,
whether the software requirements follow the system requirements) while veri-
fication is the process of inspecting the software and evaluating its compliance
to requirements.

Validation is hard to automate in general, as it needs a precise requirement
definition language with proper expression power. [11], for instance, introduces
SLCML (smart legal contract markup language) with an illustration from the
automotive domain, following a layered approach to support Business Network
Model definition, with the main focus on legal requirements (obligations and
conditions) and conditional transaction rules.

Verification of smart contracts follows a similar approach to general pur-
pose software verification. Static verification methods work on a model derived
from the source code. In most cases, these rely on the Abstract Syntax Tree
of the program, which is a typed graph capturing the structure of a software
code. Node of an AST correspond to program elements like variables, operators,
function calls, etc. where two elements in the graph are connected if there is a
containment between the elements (e.g., a variable is referred in the condition
evaluation of a loop). While an AST preserves the order of the statements in
the program, it does not contain elements which are important only for read-
ability of the code. AST is typically the basis of creating models of a software
which are processable automatically in order to find certain patterns. Control
Flow Graph (CFG) for instance, is a directed graph, capturing the dependen-
cies among statements of a program. CFG is often used as a basis for metrics
calculation, which estimate the difficulty of a software (e.g. cyclomatic com-
plexity as defined by McCabe). Such metrics are not only important for the
general quality reports, but can also concentrate the manual verification/code
inspection work as described in [37].

Here we do not want to give a deep and detailed overview on all smart
contract verification methods (which are emerging); instead we give an overview
on the goals and benefits of these. In general, such methods aim at finding
typical flaws in a program, like EtherTrust, SmartCheck, Slither, Symboleo
(REF).

Verification methods, in general, systematically check a formal model of the
system (derived from the abstract representation) and the fulfillment of several
requirements. System behavior and requirements are both mapped into dy-
namic models (often captured as state machines). E.g., if a requirement states
that a transaction must be preceded by a confirmation of a third party, than
the status of the transaction and the confirmation together are part of the re-
quirement specification. Verification mechanisms are performing an exhaustive
search looking for situations where the composite state, combined of the be-
havior of the system and the requirement, shows a possible property violation
(e.g., according to the the model of the system, the transaction is enabled with-
out previous confirmation). Note that since requirements are mapped to model
(state machine) fragments, verification methods are limited only by the expres-
sive power of the requirement modeling, but not bound to concrete application
domain. In case of verification failure, a counterexample is returned, typically

10

Figure 5: Basic principle of verification methods

in the form of event or action trace, leading to the requirement violation.
The possible size of the state space derived from system model may be a

challenge, however, several techniques exist (from symbolic execution to itera-
tive, heuristics-driven methods or counterexample-guided refinement) to facili-
tate the evaluation of requirement without the check of all possible states. In the
previous example, if there is a large loop in contract execution which does not
contain actions referring to the confirmation or the execution of a transaction,
then the entire loop can be neglected when checking the sample requirement.

Note that verification methods need only the smart contract code (or a model
which described an equivalent behavior) and a model of the requirements, but
not an implementation or concrete blockchain network. The result of verification
(assuming that these models are correct, i.e., there is no possible behavior in
the implementation which is not captured by the model) covers all possible
cases, therefore can be considered more precise than the result of testing. On
the other hand, due to the over-approximation of models, there can be false
positive results, where verification identifies a trace which cannot happen in
the real implementation (e.g., because of the qualitative abstraction methods,
a combination of qualitative values cannot be mapped to a valid combination
of concrete values in the implementation.). Such result need an expert review
and a possible refinement of the models.

However, there are several reasons for testing applications even if their model
passed a successful verification:

• Integration and configuration issues: As verification is performed over
abstract models, configuration problems (e.g. timeout, data conversion,
network-related problems) must be checked by testing the final application
deployed on the blockchain network as well.

• Model correctness: depending on the development method, the behavior
final application (including the interface to client applications) may differ
from that captured by the model.

11

5 Vulnerability assessment

After defining the basic concepts of dependability and the possible fault cate-
gories, we describe how smart contracts (and in general, blockchain applications)
can be evaluated in order to assess their robustness. Until now, we defined log-
ical faults and fault categories, here we present some sources of information
which help to turn such logical faults to concrete defects at the level of the
technologies applied.

5.1 Applicability of general purpose vulnerability databases

As blockchain-based applications are typically embedded into existing enterprise
infrastructure, their robustness is effected by the environment they are being
used, including the protection mechanisms of client applications. Therefore,
besides the evaluation of smart contracts themselves, a systematic check of the
“surrounding” environment is needed.

Common Weakness Enumeration (CWE, available at MITRE page) is a
database containing general weaknesses, together with measurement/detection,
mitigation and prevention mechanisms. The description of a weakness contains
a description and a hierarchy of weaknesses which can be considered as special-
ization (see e.g., the description of improper input validation for an illustration).
Besides the description of the weakness, a collection of related attack vectors
is also presented to define how a series of malicious requests can exploit the
vulnerability. While CWE is not specific to smart contracts, it serves a starting
point for robustness analysis.

CVE (Common Vulnerability Enumeration, MITRE page) is also a collection
of cybersecurity vulnerabilities, containing technological details as well. For
instance, the keyword “smart contract” returns more than 520 vulnerabilities
specific to smart contracts (as of June 2021). A lot of these are directly related
to improper handling of token functions at different ERC20 compatible token
implementations (e.g., a potential overflow of an integer value could result in
setting an improper balance).

CAPEC (Common Attack Pattern Enumeration and Classification, MITRE
page) is a collection of attack patterns, described at high level, which can then
mapped to concrete technologies. E.g., the generic scheme of invalid input data
is specialized in the case of web-based system to the attack type where system
files are retrieved by manipulated client requests. Although CAPEC does not
focus directly on smart contract execution, a number of possible attacks are
collected which might be used to exploit vulnerabilities of the underlying cryp-
tography services. CAPEC also enumerates mitigation and solutions techniques
(which also have to be mapped to the concrete technology).

Looking for specific vulnerabilities of Hyperledger Fabric applications, one
can mention Chaincode Scanner (previously Hyperchecker, EF), reviveCC ().

12

https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/20.html
https://cve.mitre.org/
https://capec.mitre.org/
https://capec.mitre.org/
https://github.com/sivachokkapu/revive-cc

5.2 Tools for minimizing smart contract vulnerabilities

It is crucial for a smart contract to be as safe and as bug-free as possible, since
deployed contracts cannot be updated. This means that the developers have no
way to patch the already deployed smart contracts like they can release security
fixes for traditional software, so the code will contain the bug forever, leading to
the possibility of exploits, that could cause serious losses, just like it happened
in the case of the infamous TheDAO attack [29].

The definition of smart contracts can go wrong in various different ways – the
underlying reason is mostly lack of technical understanding. In order to avoid
such defects, creators of smart contracts should follow certain best practices and
rigorously validate and verify the behavior of the smart contract before unleash-
ing it in the wild. A good reference on the possible smart contract defects can be
found in [7], where the authors provide ideas on preventing such defects, as well
as describing the effects of such errors in Ethereum-based blockchains. When
discussing smart contracts on Ethereum, further description of best practices to
avoid security vulnerabilities can be found in [49] and in [31].

A further reference material in this topic is [27], in which the authors – beside
describing vulnerabilities and their exploits – present their tool called Oyente,
aiming to discover vulnerabilities in smart contract codes. The ContactFuzzer
[20] is a tool with similar aims, complementing the Oyente capabilities in vul-
nerability analysis.

In our case, to mitigate the risk of the code containing serious vulnerabilities,
the code of the company contract was checked by tools that detect vulnerabil-
ities in Solidity contracts, including, but not limited to reentrancy vulnerabili-
ties, unchecked tokens transfers and functions allowing anyone to destruct the
contract. The tools used are Mythril and Slither.

5.2.1 Mythril

Mythril is a security analysis tool that uses symbolic execution, SMT solving
and taint analysis to detect security vulnerabilities in smart contracts (more
specifically, in the EVM bytecode of the contract) [33]. The full list of vulnera-
bilities detected by Mythril can be found in its module listing [34]. By default,
Mythril uses 22 as the recursion depth for the symbolic execution engine. To
increase the number of explored states, therefore lowering the possibility of un-
covered states and bugs remaining in the code, Mythril was run with double
recursion depth compared to the default value.

Regarding our use case demonstrator, Mythril did not find any vulnerabilites
in the company smart contract with 44 recursion depth. The command and its
output was the following:

sudo docker run -v ~/contracts:/tmp mythril/myth analyze /tmp/Company.sol

--max-depth 44

13

The analysis was completed successfully. No issues were detected.

5.2.2 Slither

Slither [41] is a static analysis framework for Solidity. It converts Solidity smart
contracts into an intermediate representation, therefore it is able to preserve
semantic information that would be lost in transforming Solidity to bytecode
[12]. It complements the use of dynamic analysis tools, such as Mythril, it is
able to find more/different vulnerabilities, and it can highlight code optimization
opportunities. The list of vulnerabilities detected by Slither – along with the
information about them and the detectors – can be found on its GitHub page
[41], as well. GitHub page.

Regarding the company contract in our use case demonstrator, Slither only
reported informational warnings about the used compiler version being too re-
cent (0.8.4). Other warnings were about the ERC20 and asset contracts.

5.3 Dependability assessment by fault injection

Besides evaluating the robustness of a concrete contract, it is important to
estimate the effectiveness of different protection mechanisms, in order to give
a general suggestion on improving the quality of blockchain applications. In
critical systems, this effectiveness is often evaluated by applying fault injection
techniques. This approach takes a fault-free system and a fault model as input,
and tries to systematically insert faults, finding all possible occurrences, and
then evaluates the behavior of the artificially ”spoilt” system, comparing it the
the fault-free reference. This technique was first applied in hardware testing
where the effect of physical phenomena (heat, vibration, background radiation,
etc.) is evaluated on test devices. In case of software, fault injection refers to
the mechanism where typically programming faults are inserted into a correct
program code, and the effect of these faults are checked. This can be consid-
ered as a practical evaluation of the fault-error-failure chain at a system given
configuration.

Faulty version of a software are called mutants, referring to the mutation
operators which represent typical faults. Such an operator can be e.g. comparing
two objects by reference instead of value; this comparison will return ”false”
to a the comparison of logically equivalent objects stored at different memory
addresses. Another typical faults are the usage of wrong arithmetical operator,
not handling a possibly zero value of a divider, etc.

In order to apply such mutation operators systematically, their potential
occurrences (mutant candidates) are labelled according to the categorization
model of ODC (Orthogonal Defect Classification). ODC defines severity and
potential impact of faults, as well as a logical category for the mutant (e.g.,
whether a wrong operator in a concrete comparison corresponds to a wrong
input validation or a wrong arithmetic expression used in variable assignment
). To find such places in the program code, it first needed to be analyzed using
the Abstract Syntax Tree representation.

14

https://github.com/crytic/slither#bugs-and-optimizations-detection

Figure 6: Fault detection example: contracts with built-in protection, without
formal methods, [14]

After finding the mutant candidates, a check is performed in order to filter
duplicates (where the same mutation operator covers multiple fault categories)
and, by using qualitative abstraction, the representative mutants are generated.
While this correspond to the fault injection phase, evaluation is performed by
running the contract with a pre-defined workload, which is representative to
the contract family (e.g., in the case of a transaction handling contract, the
workload contains both successful and failed requests, etc.).

The same mutant was evaluated under different configuration, as the pur-
pose was to evaluate protection mechanisms in the presence of faults. There
were two orthogonal dimensions of protection: whether formal verification was
applied or not and what was the level of protection assumed from the contract
developed. The latter was modeled by creating three variant from each contract:
a base contract which was an original publicly available contract, a ’stripped’
version where all protection constructs which are not necessary for the execu-
tion of the core business logic were removed (representing the ”quick and dirty”
development of proof of concept applications) and a ”protected” version where
protection mechanisms (like revert and asserts) were inserted to all potential
places in the source code (representing the careful contract developed following
all best practices).

As an example, we introduce the evaluation of protection methods, and in
general, possible development processes, we present the result of two concrete
parameter combinations of the experiment space: where contracts are well pro-
tected by the developer, first without formal verification, then assuming that a
design time formal verification precedes the deployment.

As Fig.6 shows, the self-detection mechanism of the smart contracts catch
most faults, preventing them from causing a user-perceivable failure. Platform
mechanisms, due to their more general nature, did not improve fault detection
(for the sample test set of contracts), since these would have caught faults which
are already covered by specific checks in revert and assert constructs. In a small
number of cases, some faults cause failures, which, however, can be detected
by the client application as the return value of the transition are different from

15

Figure 7: Fault detection example: contracts with built-in protection, with
formal methods,[14]

that of the reference implementation. In a small number of contracts, latent
errors (which cannot be detected at the time of execution) will occur which
may clearly undermine the robustness of the application, as it may later result
in faulty operation when reading such data. Note that percentages on the figure
represent ratios across contracts and not individual transactions; therefore, with
other types of workload these may be lower as well.

Fig.7 illustrates results for contracts where formal verification is also used:
in this case, most of the mutants will be detected at design time and no mutant
can cause latent errors. Note that the number of ineffective mutants (causing
no difference from reference implementation and not detected by protection
mechanisms) is lower as well: this reflects the fact that verification is rigorous
and will find cases which would not be detected by testing.

6 Robust DLT-assisted workflow execution

6.1 Describing and executing workflows or business pro-
cesses

Workflows appear in various levels (from physical devices to abstract business
structures working together towards a goal) and in various horizontal domains
(from production to healthcare). The description of these workflows are often
based on a domain-specific language or on a set of rules that does not even
qualify a language. In other cases the description is based on standardized con-
cepts such as BPMN (Business Process Modeling Notation) or CPN (Coloured
Petri-Nets).

Recently, the description, execution and analysis of workflow processes have
become a popular thanks to the Industry 4.0 initiatives. The following para-
graphs are an extract of our previous work on related literature study [22].

Krishna et al. [25] analyzed business processes that describe the production
of goods or services as a set of local tasks and inter-organization exchanges. In
their view it seems that primary business process modeling notations have a
workflow perspective of business processes. A thorough state of the art study

16

is presented by Brouns et al. [6], which identifies certain differences of business
process design and implementation when it comes to the digital world and IoT
use-cases. They highlight the importance of presenting IoT system of systems in
business process models in a unified way. They also suggest to incorporate the
various concepts of IoT and cyber-physical systems, focusing on the connection
between digital systems and physical agents.

Modeling languages do not fully cover concepts such us availability and mo-
bility of resources or process context information. Among the alternatives for
modeling analyzed, such as the BPMN 2.0, EPC (Event-driven Process Chains),
and UML (Unified Modeling Language), their paper pinpoints BPMN as the
best position to represent IoT; although some improvements are necessary.
BPMN 2.0 is an ISO standardized notation for modeling business processes
that can be made executable either using process engines (e.g., Activiti, Bonita
BPM, or jBPM) or using model transformations into executable languages (e.g.,
BPEL – Business Process Execution Language) [22].

Mass et al. compares different workflow execution types: an embedded
workflow engine and a coding program representing the workflow [28]. The
conclusion is that executing business processes on a workflow engine cannot
be justified in cases where system resources are sparse, and the model is not
reused. In cases where the same process is executed multiple times, and lots of
memory is available, a workflow engine is a viable solution. The same applies
for distributed DLT-based smart contract execution. It is often unfeasible for
IoT endpoints to do anything more than ”logging” transactions to the BC, due
to resource constraints.

6.2 Workflow execution - requirements and dynamics

When mapping workflow execution to smart contracts, it is important to elim-
inate the problems first at the workflow descriptions.

The correctness of the workflow processes and their changes can be analyzed
in various ways, where the aim is the preciseness of task sequences or finding out
structural errors [13, 1, 43]. Regarding the handling of fast-changing business
environments, Du et al. [10] found that it is so challenging for the workflow ex-
ecution that they propose an off-line approach using temporal constraints that
impacts during the design stage. They identified that systems must adapt and
respond dynamically to changes throughout the life cycle. Therefore, the ulti-
mate goal is to provide a solution that can operate in real-time circumstances
and can adapt to changes on-the-fly, like the substitution of a given resource
(occupied) by another available. This research is independent from the ser-
vice oriented architecture-based IoT production workflow execution, but points
towards the same requirements and probably, solutions as well.

When creating a framework to manage these processes and resources, we
have set the following requirements in [22]:

1. Requirements at the enterprise level:

17

• To provide a high-level graphical vision of workflows for easy under-
standing and monitoring;

• To provide a universal language for easy communication;

• The technique modeling processes must be easily implemented and
deployed in real scenarios.

2. Requirements at production level:

• To represent complex processes involving distributed systems and
production flows;

• To accommodate timing constraints and enable hierarchical compo-
sition.

3. Requirements at the framework level:

• To accommodate standard modeling techniques;

• To provide a single framework for the implementation, execution,
and monitoring of processes;

• To maintain the hierarchy for enterprise and production levels;

• To provide tools for the agile and dynamic construction of workflows;

• To enable the automatic deployment of workflows;

• To enable business process changes during the whole lifecycle;

• To enable the sharing of resources (reallocation and substitution) in
real-time;

• To enable interoperability and integrability for heterogeneous sys-
tems;

• To enable a service-oriented driven architecture guaranteeing adapt-
able, loosely coupled, and late-bound services.

These requirements are partially covered by the Arrowhead Framework al-
ready [21] – and since part of the framework is still growing, the plan is to cover
all the above requirements at a certain stage.

6.3 Workflows at enterprise level

This section appear as is in our published work, [22].
Several business process modeling tools and languages have been proposed

to describe, analyze, and evaluate business processes [15]. The BPMN [48] is
one of the most widely used and standardized modeling languages that can
be used to describe workflow structure, organizational level tasks, helping to
manage process-related resources effectively. Consequently, BPMN serves as
a universal language that bridges the communication gap that often occurs
between business process planning and implementation. The primary goal with
BPMN is to support business process management and provide a structure

18

that is easy to understand for every participant during the production. The
BPMN specification also provides a graphical description and has the following
components:

• Events: start, intermediate, end;

• Activities: (i) Tasks: service, user, script, mail, receive, business; (ii)
Multiple instances; (iii) Sub-processes; and (iv) Loop.

• Gateways: exclusive, inclusive, parallel, event-based and complex;

• Data and Flows: data object, association, sequence-, default- and message
flow.

There are several possibilities for creating and executing BPMN workflows,
depending on the solution preferred by the designer. The most common process
engines are [4] Activiti, jBPM, or Bonita BPM. Model transformation to some
executable language such as BPEL is also possible [25].

6.4 Modeling parallel workflows at production level

This section is an extended version of a similar section in our related, published
work [22].

Modeling languages – such as BPMN or BPEL – are relatively easy to in-
terpret, but they are not entirely suited to describe very complex production
cases. In contrast, based on a previous comparison [47], Petri nets are useful for
describing complex logic that can represent distributed systems and production
flows, as well. The Petri net [32, 19] is a widely-known and used graphical-
mathematical model-description language. Briefly described, it is a directed
bipartite graph consisting of places and transitions. Directed arcs carry ”firing”
conditions between places and transitions. This language is suitable for model-
ing distributed systems; this is one of the reasons why it is widespread in the
industrial field.

Although the language satisfied the industrial expectations in the past, the
requirements of Industry 4.0 already set higher demands on modeling languages
in general, which traditional Petri net can no longer satisfy in the sense of, e.g.,
timing or hierarchy. However, along with the recent digital industrial revolu-
tion, the Petri net has also undergone many iterations – resulting in the so-called
High-Level Petri nets, which can be used to describe more complex industrial
processes. One of the languages is resulting among others the Coloured Petri
net (CPN) [8]. This extension adds the ability to carry more complex informa-
tion in the tokens to Petri nets, becoming the token ”colored”. It also allows
the use of time as a parameter and supports a hierarchical composition. For the
efficient modeling of CPN, several tools have been developed, which can model
the CPN approach, and the best known is the CPN Tools [17]. CPN Tools is
based on the Standard Meta Language (SML) – which is a functional program-
ming language –but the CPN Tools also extends SML with functions such as
color sets and constructs for declaring variables, multisets, and related operators

19

and functions. SML enables simulation, state-space analysis, and performance
analysis [18]. The next section puts our proposal in context with the related
work.

6.5 Loose coupling and Late binding of stakeholder sys-
tems

Multi-stakeholder industrial ecosystems have dynamic connections with each
other, and their processes are interwoven in complex ways. It is a long-term
challenge for industrial ecosystems to handle the three dimensions of Digital
Production (DP), Product Lifecycle Management (PLM) and Supply Chain
Management (SCM) together. Although until recently these were addressed by
separate models, methodologies and tools, it would be advantageous to handle
them together. In order to reach such an integrated state, we must address the
burden of inter-domain communication issues among the experts of the digital
quadruplets. This means that mechanical and electrical engineers, computer
scientists have to work together with experts of the law and the economics
domain in order to provide an optimal path to have a harmonised, converged
Industry 4.0 playground – not only in the engineering levels but all the four areas
of the digital quadruplets: (i) engineering the physical world, (ii) engineering the
cyber counterpart of cyber-physical systems (CPS), (iii) handling the regulatory
and legal issues of CPS, as well as (iv) taking care of the financial economic
relations of the CPS approach.

Let us consider the service oriented architecture abstraction here, in the
overall ecosystem. In other words, we should think of the stakeholders (let they
be physical devices or enterprises) as they aim for exchanging services, and every
one of them is either a service provider, a service consumer, or both. ”Services”
in this sense are abstract entities, and could be anything that a partner could
exchange with another: information, solution, or even a physical asset.

Loose coupling of stakeholder systems mean that the involved devices – or
even enterprises – depend on each other to the least possible extent when ex-
changing services. They can connect to each other ”run-time” only for exchang-
ing the given service and then decouple just as easily – no strings attached, they
do not have to know anything else about each other.

This leads us to the other important aspect called late binding, which al-
lows not only pre-defined connections ”planning-time” or ”deployment-time”,
but the stakeholder elements can bind each other ”run-time” without knowing
preliminarily who the other counterpart will be.

This function can be made possible through service discovery (or lookup) in
the service oriented architecture.

Even when staying within the engineering domains, the optimal, homoge-
neous solution requires a framework that can dynamically automate processes
while taking into account various issues, including the

• creation of new System-of-Systems,

• integration of brand new as well as legacy elements,

20

• dynamic interoperability between elements,

• seamlessly scalable information sharing among participants – even within
different stakeholder domains and security levels,

• real-time requirements,

• reliability and scalability issues,

• Quality of Service issues,

• status handling of – or even the control over – resources,

• ease of engineering processes – in design-time, deployment-time and operational-
time,

• safety and security issues.

6.5.1 A brief overview of the main Arrowhead concepts

The current version of this overview is based on our survey [23] on DP, SCM
and PLM.

The Arrowhead Framework has originally come to life [46] to cover interop-
erability and integration issues for the IIoT world. It supports the collaboration
of newly built as well as legacy CPS architectures based on the principles of
Service-Oriented Architectures (SOA) through applying the System-of-Systems
(SoS) approach. One part of the above listed issues are tackled through the Lo-
cal Cloud concept empowered by inter-cloud communication capabilities. The
Arrowhead Framework defines mandatory core systems for the local clouds,
which provide the necessary core systems. Further, supportive core systems
provide general services that are often needed in System of Systems, so integra-
tors do not have to implement their solutions for such common services. The
Application Systems are distinct elements of the SoS, these provide (and in
fact, consume) the various application services – in a discoverable, late-bound,
loosely coupled way that is defined by the SOA. Figure 8 describes the current,
main systems of the Arrowhead Framework.

The mandatory core services are Orchestration System (mainly service dis-
covery and late binding), Service Registry (so services providers can announce
their active services), and Authorisation System (to provide Authorisation and
Authentication). Further, supporting core services are provided by the Gateway
and Gatekeeper Systems for inter-cloud communication (data and control plane,
respectively), the Workflow Choreographer (to trigger the next step in the pro-
cess execution), the Event Handler (to circulate status and event information),
and the Plant Description System (to keep track of SoS- or Plant-related meta-
data), among others. Each stakeholder has their local cloud(s), working as an
SoS, their systems implement either intra- or inter-cloud information sharing,
as well as security- and other policies.

When taking a closer look at the above-listed requirements, the correspond-
ing citations actually ”hide” scientific papers related to Arrowhead Framework.

21

Figure 8: Core Systems of the Arrowhead Framework

Figure 9: SCM, PLM and DP managed by Arrowhead Framework

22

The papers surveyed in [23] are not only requirement specifications, but original
conceptual descriptions, and reports on implemented solutions.

6.5.2 The Arrowhead Framework to support DP

Digital Production is hidden in Figure 9 – these can be within the Supplier’s
premises or the Company’s premises. Production is listed as one of the services
in the figure (which is true for the SCM hierarchy), although there are many
systems on the production floor that exchange services between each other –
these could be, e.g., fitting, welding, screw-driving, cutting, painting, filling, etc.
This infrastructure is by default supported through the Arrowhead Framework
– including its Workflow Choreography service –; various application examples
have been demonstrated already [22].

One such example is illustrated by Figure 10, showing how the Enterprise
level workflows (described through BPMN) and the production-level workflow
details (described through CPNs) can get integrated. The production-level CPN
execution is controlled by an Arrowhead Workflow Choreographer. It executes
the CPN-described recipe by using the Orchestrator to find out which service
provider is available and fit for a given task at the given place and time. This
loop of steps for choosing the provider at a given execution step is very straight-
forward, as shown by Figure 11.

Figure 10: Integration of the BPMN model on enterprise level and the CPN
templates on production [22]

6.6 DLT-assisted workflow execution

After providing an overview of workflow modeling, workflow descriptions, dy-
namic execution of workflows based on the available executor devices, let us take
a further step and see how Distributed Ledger Technologies can assist workflow
execution.

23

Figure 11: Sequence diagram of executing any production plan by using the
Workflow Choreographer of Arrowhead [24]

We are practically talking about workflows described as smart contracts,
and smart contracts executed through DLT.

Smart contracts can be abstracted from workflow or process descriptions
with additional restrictions or features. An early representation of such an
abstraction is described in [40].

A more recent study from J. Mendling et.al. [30] describes the challenges and
opportunities that blockchain technologies provide for Business Process Man-
agement. They discuss blockchain in relation to the BPM lifecycle, reflection on
all its phases including identification, discovery, analysis, redesign, implemen-
tation, execution, monitoring, as well and adaptation and evolution. This is a
very important overview, since the common focus in on implementation and ex-
ecution – although all the other BPM phases must be taken into account when
using blockchains for either smart contracts or workflow and process control
purposes.

Besides discussing BPM capabilities – such as strategy, governance, IT, peo-
ple and culture – in the light of blockchain technologies, the authors of [30] list
seven future research directions on the domain. These are

1. developing execution and monitoring systems,

2. devising new methods for analysis and engineering business process based
BCT,

3. redesigning processes to benefit the opportunities provided by BCT,

4. defining methods for evolution and adaptation,

24

5. developing techniques for the BPM phases to adopt BCT,

6. understanding the impact on strategy and governance of BCT regarding
business and governance models,

7. investigating the culture shift towards openness in the management and
execution of processes.

When discussing Ethereum blockchains in particular, Hsain et.al. [16] sur-
veyed Model Driven Engineering (MDE) methods for constructing and develop-
ing smart contracts. The survey compares the various efforts on using BPMN,
DMN (Decision Model and Notation), dependency graphs, finite state machines,
object-event tables, smart contracts as transition system, contract action dia-
grams and many more. Each of the analyzed methods have corresponding So-
lidity or Hyperledger code which is beneficial for comprehension, although not
all the surveyed papers implemented proper security measures, which could be
a warning sign: robustness should be addressed at the modeling phase as well.

A well-documented example of the BPMN approach applied to Hyperledger-
based smart contacts is described by Panduwinata and Yugopuspito [36], where
a reservation-based parking system case is handled through smart contracts but
also visually described as a multi-level BPMN process.

6.7 Techniques for making DLT-based workflows robust

There are some already established design patterns that help making DLT-based
workflows robust – in this case: in the format of smart contracts. Domain ex-
perts keep improving the related patterns, methods and best practices. The
following subsections provide a current overview of the state-of-the-art design
patters, and although many are targeted to the Ethereum platform, their find-
ings can often be applied universally.

6.7.1 Smart Contract Design Patterns in the Ethereum Ecosystem

In their paper, Wöhrer and Zdun [50] identify and categorize the most widely
applied design patterns used in Solidity smart contracts based on the logical role
of the individual patterns. These groups are Action and Control, Authorization,
Lifecycle, Maintenance, and Security.

The description of patterns range from the very basic Ownership pattern,
used by almost every smart contract in some way, that allows for the restriction
of access of certain function, to the more advanced Oracle or Commit and
Reveal patterns. The authors describe every pattern through a short overview
and demonstrate their usage by a sample contract code, along with the problem
that the particular pattern provides a solution to. Overall, this paper [50]
identifies 18 design patterns coming from various sources, although only 12 is
discussed in detail, covering a variety of use cases and real-world applications.
All sample code – for Solidity smart contracts – can be found in [9], together
with a brief description of every pattern they identified.

25

The newly proposed Maintenance Patterns help developers to write smart
contracts that can be updated on the blockchain without the need to deploy a
whole new contract whenever there is a small part or functionality that is added
or changed.

6.7.2 Further Design Patterns for Solidity

The GitHub repository for Solidity Patterns [42] contains very similar practices
are described before, and some additional ones, as well. One such example is
the Randomness pattern, that is the core of many games and gambling appli-
cations, although it is very hard to achieve a sufficient level of randomness on
the blockchain, due to its intrinsic nature of being a deterministic and transpar-
ent environment. The author of [42] identified four groups, namely Behavioral
Patterns, Security Patterns, Upgradeability Patterns, and Economic Patterns.
The latter mentioned one is one about efficiency, containing three patterns that
are designed to optimise the gas usage of methods. This aspect is not often
discussed, and sometimes overlooked, but it is also a quality of robust smart
contracts.

6.7.3 Creational, Structural, and Behavioral Design Patterns

The authors of [26] took yet another approach to the taxonomy of design pat-
terns. They identified 8 design patterns and categorized them into groups called
Creational Patterns, Structural Patterns, Inter-Behavioral Patterns and Intra-
Behavioral Patterns. Five patterns have actually been applied to a real-world,
blockchain-based traceability system called originChain. Beside presenting pat-
terns that work together and form a complex structure of smart contracts, the
authors of [26] also proposed a related traceability system, as well.

6.7.4 Proxy Patterns for adding modification features to Smart Con-
tract

OpenZeppelin [35] proposed a method to solve the problem of upgrading (or
correting) already deployed smart contracts. Note that this is a contradic-
tion, since the immutability feature of the blockchain would naturally prevent
the modification of smart contracts. Although deployed contracts still remain
immutable; but changing certain variables, writing special functions, and sepa-
rating logic and storage can enable developers to upgrade features or even whole
smart contracts if needed.

The blog post [38] authors proposed several ways to achieve this on Open-
Zeppelin – they called their set of methods Proxy Patterns. The method for
separating storage makes it possible to update the underlying logic without los-
ing data or needing costly rewrites. The main idea is to use a permanent proxy
contract, which is an intermediary between the caller of the called contract, and
the called contract itself. This contract does nothing but forward calls to the
logic contract and the result back to the caller. It does not change at all, its

26

address remains the same so the callers do not notice any change when updates
happen to the logic contract. When developers need to update or add some
functions, they deploy a new logic contract that contains the updated code, and
the proxy contract will then communicate with this new contract. This way,
the changing of the logic is completely transparent to the callers.

There are three ways proposed to address the related problem. These ap-
proaches are called Inherited Storage, Eternal Storage, and Unstructured Stor-
age. Each of them solves the problem, but they have some characteristics which
make one preferred over the other, depending on the circumstances. Namely,
the structure of the Unstructured Storage makes it the best choice in the major-
ity of use cases, because it is fairly easy to implement, and the existing contracts
do not need to be modified at all – they can be used with the proxy without any
changes. (This approach is very similar to the Contract Relay Pattern found in
[50], and the Proxy Delegate pattern found in [9], however, the Contract Relay
Pattern is an outdated version that is not recommended to use due to its inabil-
ity to return result values.) Further details and some important things about
the Unstructured Storage, and sample contracts can be found in [39] and [45].

7 Summary: possible impacts of regulatory con-
trol enablement

To summarize, we conclude with an overview of the potential impact of enabling
the regulatory control by distributed ledger technologies, with an emphasis on
fault tolerance.

Fault removal and mitigation: Continuous audit In the case of traditional
audit processes, faults can be detected only long time after their occurrence,
therefore minimizing their impact can be done only by cumbersome compen-
sation actions. Although such actions can also be expressed as special work-
flows (as supported by e.g., the BPEL and BPMN standards), these are rarely
used since the difficulty of designing a correct and effective compensation flow.
Therefore, the promise of executing a ”continous audit process” can be a strong
argument for the application of distributed ledgers.

Fault prevention: Checking / enabling Transactions before they get active
or live. Fault prevention can be implemented by including the regulatory body
or further participants of the financial infrastructure in the execution of trans-
actions. As there is a possibility to share transactions without revealing the
origin/target of the transaction (e.g., based on digital identities and external
oracles), suspicious transactions and transaction patterns can be analyzed quasi
realtime, which can drastically decease the chance of executing a fraudulent
transaction.

Fault prevention: Whitelisting and Blacklisting functionalities can be di-
rectly integrated to the business logic. As execution of smart contract steps
can be bound to specific roles, the supervisor can act as a distinguished actor
to ”enable or disable” certain transactions. Smart contract: how to include?

27

Whether and how different participants of the financial infrastructure should
be part of the business logic or used as information source, and exactly what
kind of data should be stored on the ledger and managed by smart contracts
(including the possibility to offer query to third parties) is an important further
research question.

Value-added services on top of CBDC smart contracts. If the smart contract
handle different aspects of transactions (and also different ”colors” of tokens),
a number of value added services can be created as a layer on top of the ”flow
of money”. In the case of industrial IoT, for example, applying certain methods
in manufacturing (like a low-emission machinery step) can result ”bonuses”
(e.g., reduction of environmental tax). The conditions for such services can be
regularly updated and the effect of this ”upper layer” of smart contracts can be
evaluated and compared with the original goal of the policy maker.

Platform: whether and how to include the regulator and/or central bank
The level and method of including the regulatory in the blockchain network is
an important design decision. A possible design pattern can be to share only
aggregated information, when even without the detailed view, the regulatory
can follow and monitor the transaction flow. On the other hand, performance
itself should not be an obstacle; depending on the resolution of information
and the definition of ”transaction” in the smart contracts (chaincode), current
technologies promise a potential throughput which even supports the central
bank in participating in a number of blockchain networks.

References

[1] Naveed Ahmad, David C Wynn, and P John Clarkson. “Change impact
on a product and its redesign process: a tool for knowledge capture and
reuse”. In: Research in Engineering Design 24.3 (2013), pp. 219–244.

[2] Mouhamad Almakhour et al. “Verification of smart contracts: A survey”.
In: Pervasive and Mobile Computing (2020), p. 101227.

[3] Algirdas Avizienis et al. “Basic concepts and taxonomy of dependable
and secure computing”. In: IEEE transactions on dependable and secure
computing 1.1 (2004), pp. 11–33.

[4] Karim Baına and Salah Baına. “User experience-based evaluation of open
source workflow systems: The cases of Bonita, Activiti, jBPM, and In-
talio”. In: 2013 3rd International Symposium ISKO-Maghreb. IEEE. 2013.

[5] Betsy Beyer et al. Site reliability engineering: How Google runs production
systems. ” O’Reilly Media, Inc.”, 2016.

[6] Nadja Brouns et al. Modeling IoT-aware Business Processes - A State of
the Art Report. 2018.

[7] Jiachi Chen et al. “Defining Smart Contract Defects on Ethereum”. In:
IEEE Transactions on Software Engineering (2020). doi: 10.1109/TSE.
2020.2989002.

28

https://doi.org/10.1109/TSE.2020.2989002
https://doi.org/10.1109/TSE.2020.2989002

[8] Søren Christensen, Lars Michael Kristensen, and Thomas Mailund. “Con-
densed state spaces for timed Petri nets”. In: International Conference on
Application and Theory of Petri Nets. Springer. 2001, pp. 101–120.

[9] Design Patterns. https://github.com/maxwoe/solidity_patterns.
Accessed: 2021-07-28.

[10] Yanhua Du, Benyuan Yang, and Hesuan Hu. “Incremental Analysis of
Temporal Constraints for Concurrent Workflow Processes With Dynamic
Changes”. In: IEEE Transactions on Industrial Informatics, Vol 15, NO.
05, Pp 2617-2627 (2019) 15 (2019), p. 10. doi: 10.1109/TII.2018.

2868810.

[11] Vimal Dwivedi et al. “A Formal Specification Smart-Contract Language
for Legally Binding Decentralized Autonomous Organizations”. In: IEEE
Access 9 (2021), pp. 76069–76082.

[12] Josselin Feist, Gustavo Grieco, and Alex Groce. “Slither: A Static Analysis
Framework for Smart Contracts”. In: 2019 IEEE/ACM 2nd International
Workshop on Emerging Trends in Software Engineering for Blockchain
(WETSEB) (May 2019). doi: 10.1109/wetseb.2019.00008.

[13] D. Habhouba, S. Cherkaoui, and A. Desrochers. “Decision-Making Assis-
tance in Engineering-Change Management Process”. In: IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C (Applications and Re-
views) 41.3 (May 2011), pp. 344–349.

[14] Ákos Hajdu et al. “Using Fault Injection to Assess Blockchain Systems in
Presence of Faulty Smart Contracts”. In: IEEE Access 8 (2020), pp. 190760–
190783.

[15] Michael Havey. Essential business process modeling. O’Reilly Media, Inc.,
2005.

[16] Yassine Ait Hsain, Naziha Laaz, and Samir Mbarki. “Ethereum’s Smart
Contracts Construction and Development using Model Driven Engineer-
ing Technologies: a Review”. In: Procedia Computer Science 184 (2021),
pp. 785–790.

[17] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. “Coloured Petri
Nets and CPN Tools for modelling and validation of concurrent systems”.
In: International Journal on Software Tools for Technology Transfer 9.3-4
(2007), pp. 213–254.

[18] Kurt Jensen and Grzegorz Rozenberg. High-level Petri nets: theory and
application. Springer Science & Business Media, 2012.

[19] Kurt Jensen et al. Transactions on Petri Nets and Other Models of Con-
currency VII. Vol. 7480. Springer, 2013.

[20] Bo Jiang, Ye Liu, and W. K. Chan. “ContractFuzzer: Fuzzing Smart Con-
tracts for Vulnerability Detection”. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ASE 2018.
Association for Computing Machinery, 2018, pp. 259–269. isbn: 9781450359375.
doi: 10.1145/3238147.3238177.

29

https://github.com/maxwoe/solidity_patterns
https://doi.org/10.1109/TII.2018.2868810
https://doi.org/10.1109/TII.2018.2868810
https://doi.org/10.1109/wetseb.2019.00008
https://doi.org/10.1145/3238147.3238177

[21] Dániel Kozma, Pál Varga, and Felix Larrinaga. “Data-driven Workflow
Management by utilising BPMN and CPN in IIoT Systems with the Ar-
rowhead Framework”. In: 2019 24th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA). IEEE. 2019,
pp. 385–392.

[22] Dániel Kozma, Pál Varga, and Felix Larrinaga. “Dynamic multilevel work-
flow management concept for industrial iot systems”. In: IEEE Transac-
tions on Automation Science and Engineering (2020).

[23] Dániel Kozma, Pál Varga, and Gábor Soós. “Supporting digital produc-
tion, product lifecycle and supply chain management in industry 4.0 by the
arrowhead framework–a survey”. In: 2019 IEEE 17th International Con-
ference on Industrial Informatics (INDIN). Vol. 1. IEEE. 2019, pp. 126–
131.

[24] Dániel Kozma, Pál Varga, and Kristóf Szabó. “Achieving Flexible Digital
Production with the Arrowhead Workflow Choreographer”. In: IECON
2020 The 46th Annual Conference of the IEEE Industrial Electronics So-
ciety. 2020, pp. 4503–4510. doi: 10.1109/IECON43393.2020.9254404.

[25] Ajay Krishna, Pascal Poizat, and Gwen Salaün. “Checking business pro-
cess evolution”. In: Science of Computer Programming 170 (2019), pp. 1–
26.

[26] Yue Liu et al. “Applying Design Patterns in Smart Contracts”. In: June
2018, pp. 92–106. isbn: 978-3-319-94477-7. doi: 10.1007/978-3-319-
94478-4_7.

[27] Loi Luu et al. “Making Smart Contracts Smarter”. In: CCS ’16. Vienna,
Austria: Association for Computing Machinery, 2016, pp. 254–269. isbn:
9781450341394. doi: 10.1145/2976749.2978309.

[28] Jakob Mass, Chii Chang, and Satish N. Srirama. “Workflow Model Distri-
bution or Code Distribution? Ideal Approach for Service Composition of
the Internet of Things”. In: Proceedings - 2016 IEEE International Con-
ference on Services Computing, SCC 2016. 2016. isbn: 9781509026289.
doi: 10.1109/SCC.2016.90.

[29] Izhar Mehar et al. “Understanding a Revolutionary and Flawed Grand
Experiment in Blockchain: The DAO Attack”. In: Journal of Cases on
Information Technology 21 (Jan. 2019), pp. 19–32. doi: 10.4018/JCIT.
2019010102.

[30] Jan Mendling et al. “Blockchains for business process management-challenges
and opportunities”. In: ACM Transactions on Management Information
Systems (TMIS) 9.1 (2018), pp. 1–16.

[31] Alexander Mense and Markus Flatscher. “Security Vulnerabilities in Ethereum
Smart Contracts”. In: Proceedings of the 20th International Conference
on Information Integration and Web-Based Applications & Services. ii-
WAS2018. Association for Computing Machinery, 2018, pp. 375–380. isbn:
9781450364799. doi: 10.1145/3282373.3282419.

30

https://doi.org/10.1109/IECON43393.2020.9254404
https://doi.org/10.1007/978-3-319-94478-4_7
https://doi.org/10.1007/978-3-319-94478-4_7
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/SCC.2016.90
https://doi.org/10.4018/JCIT.2019010102
https://doi.org/10.4018/JCIT.2019010102
https://doi.org/10.1145/3282373.3282419

[32] Tadao Murata. “Petri nets: Properties, analysis and applications”. In:
Proceedings of the IEEE 77.4 (1989), pp. 541–580.

[33] Mythril. url: https://github.com/ConsenSys/mythril. (accessed:
05.07.2021).

[34] Mythril modules for vulnerability analysis. https://mythril-classic.
readthedocs.io/en/master/module-list.html. accessed: 06.07.2021.

[35] OpenZeppelin. https://openzeppelin.com/. Accessed: 2021-07-30.

[36] Frans Panduwinata and Pujianto Yugopuspito. “BPMN Approach in Blockchain
with Hyperledger Composer and Smart Contract: Reservation-Based Park-
ing System”. In: 2019 5th International Conference on New Media Studies
(CONMEDIA). 2019, pp. 89–93. doi: 10.1109/CONMEDIA46929.2019.
8981845.

[37] András Pataricza et al. “Cost Estimation for Independent Systems Verifi-
cation and Validation”. In: Certifications of Critical Systems-The CECRIS
Experience. River Publishers (2017), p. 117.

[38] Proxy Patterns. https://blog.openzeppelin.com/proxy-patterns/.
Accessed: 2021-07-30.

[39] Proxy Upgrade Pattern. https://docs.openzeppelin.com/upgrades-
plugins/1.x/proxies. Accessed: 2021-07-30.

[40] Holger Schmidt. “Service contracts based on workflow modeling”. In: In-
ternational Workshop on Distributed Systems: Operations and Manage-
ment. Springer. 2000, pp. 132–145.

[41] Slither, the Solidity source analyzer. url: https://github.com/crytic/
slither. (accessed: 05.07.2021).

[42] Solidity Patterns. https://github.com/fravoll/solidity-patterns.
Accessed: 2021-07-28.

[43] Ping Sun and Changjun Jiang. “Analysis of workflow dynamic changes
based on Petri net”. In: Information and Software Technology 51.2 (2009),
pp. 284–292.

[44] Palina Tolmach et al. “A survey of smart contract formal specification
and verification”. In: arXiv preprint arXiv:2008.02712 (2020).

[45] Upgradeability using Unstructured Storage. https://blog.openzeppelin.
com/upgradeability-using-unstructured-storage/. Accessed: 2021-
07-30.

[46] Pal Varga et al. “Making system of systems interoperable–The core com-
ponents of the arrowhead framework”. In: Journal of Network and Com-
puter Applications 81 (2017), pp. 85–95.

[47] Pál Varga, Dániel Kozma, and Csaba Hegedűs. “Data-Driven Workflow
Execution in Service Oriented IoT Architectures”. In: 2018 IEEE 23rd
International Conference on Emerging Technologies and Factory Automa-
tion (ETFA). Vol. 1. IEEE. 2018, pp. 203–210.

31

https://github.com/ConsenSys/mythril
https://mythril-classic.readthedocs.io/en/master/module-list.html
https://mythril-classic.readthedocs.io/en/master/module-list.html
https://openzeppelin.com/
https://doi.org/10.1109/CONMEDIA46929.2019.8981845
https://doi.org/10.1109/CONMEDIA46929.2019.8981845
https://blog.openzeppelin.com/proxy-patterns/
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://github.com/crytic/slither
https://github.com/crytic/slither
https://github.com/fravoll/solidity-patterns
https://blog.openzeppelin.com/upgradeability-using-unstructured-storage/
https://blog.openzeppelin.com/upgradeability-using-unstructured-storage/

[48] Stephen A White. “Introduction to BPMN”. In: IBM Cooperation (2004).

[49] Maximilian Wohrer and Uwe Zdun. “Smart Contracts: Security Patterns
in the Ethereum Ecosystem and Solidity”. In: 2018 International Work-
shop on Blockchain Oriented Software Engineering (IWBOSE). 2018, pp. 2–
8. doi: 10.1109/IWBOSE.2018.8327565.

[50] Maximilian Wöhrer and Uwe Zdun. “Design Patterns for Smart Contracts
in the Ethereum Ecosystem”. In: 2018 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData). 2018, pp. 1513–1520. doi:
10.1109/Cybermatics_2018.2018.00255.

32

https://doi.org/10.1109/IWBOSE.2018.8327565
https://doi.org/10.1109/Cybermatics_2018.2018.00255

	Introduction
	Notions of robustness
	Robustness of DLT platforms
	Common vulnerabilities of DLT platforms
	Consensus and transaction execution in Hyperledger Fabric

	Robust smart contracts
	Fault model
	Protection mechanisms
	Formal analysis of smart contracts
	Validation and verification

	Vulnerability assessment
	Applicability of general purpose vulnerability databases
	Tools for minimizing smart contract vulnerabilities
	Mythril
	Slither

	Dependability assessment by fault injection

	Robust DLT-assisted workflow execution
	Describing and executing workflows or business processes
	Workflow execution - requirements and dynamics
	Workflows at enterprise level
	Modeling parallel workflows at production level
	Loose coupling and Late binding of stakeholder systems
	A brief overview of the main Arrowhead concepts
	The Arrowhead Framework to support DP

	DLT-assisted workflow execution
	Techniques for making DLT-based workflows robust
	Smart Contract Design Patterns in the Ethereum Ecosystem
	Further Design Patterns for Solidity
	Creational, Structural, and Behavioral Design Patterns
	Proxy Patterns for adding modification features to Smart Contract

	Summary: possible impacts of regulatory control enablement

